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ABSTRACT
Mutation analysis is a program analysis method with applications
in assessing the quality of test cases, fault localization, test input
generation, security analysis, etc. The method involves repeated
running of test suites against a large number of program mutants,
often leading to poor scalability. A large body of research is aimed
at accelerating mutation analysis via a variety of approaches such
as, reducing the number of mutants, reducing the number of test
cases to run, or reducing the execution time of individual mutants.

This paper presents the implementation of a novel technique,
named MeMu, for reducing mutant execution time, through memo-
izing the most expensive methods in the system. Memoization is
a program optimization technique that allows bypassing the ex-
ecution of expensive methods and reusing pre-calculated results,
when repeated inputs are detected. MeMu can be used on its own or
alongside existing mutation analysis acceleration techniques. The
current implementation of MeMu achieves, on average, an 18.15%
speed-up for PITest JVM-based mutation testing tool.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Mutation analysis [5] is a program analysis method with a variety
of applications. The method is mainly used for assessing test suite
quality by computing a mutation score, indicating how good a test
suite is in detecting bugs [2]. Mutation analysis has also been used
for many other purposes, such as fault localization [17], automated
program repair [4], test generation [6] and prioritization [20], pro-
gram verification [7], etc. Mutation analysis involves generating a
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pool of program variants, called mutants, by systematically mutat-
ing program elements (e.g., by flipping a comparison operator) and
running the test suite against the mutants.

Despite the success of mutation analysis in some practical appli-
cations [1], the method suffers from poor scalability. This is mainly
because the generated mutants must be tested against the test suite,
while usually a large number of mutants are generated, making the
process extremely time-consuming. So far, a large body of research
has been devoted to reducing the cost of mutation analysis [19].
The developed techniques focus mainly on reducing the number of
generated [21] or executed mutants [23], reducing the number of
test cases to be executed [11] or reordering them [24], and directly
reducing mutant execution time [14].

This paper presents the engineering details of a Java-based novel
mutation analysis technique, named MeMu [10]. MeMu is based
on the idea of reducing mutation analysis time through reducing
the execution time for the individual mutants. MeMu optimizes
the unmutated code without compromising the semantics of the
mutated code, which makes MeMu a lossless mutation analysis
acceleration technique, i.e., MeMu does not impact the mutation
score. The nature of the optimization done by MeMu also allows it
to work alongside existing acceleration techniques and complement
them. MeMu uses memoization [15] to accelerate the execution of
the expensive methods.

MeMu focuses on reducing the execution time of unmutated
expensive methods, i.e., those that have a long execution time, rela-
tive to other methods. Given that mutation analysis requires many
repeated test executions, and a mutation involves small (usually
single-pointed) changes to the program, the expectation is that
unmutated expensive methods are executed frequently with the
same input as they would have received in the original program.
The more frequently these methods are executed, the bigger the
time savings will be. Our observation that the top 20% most expen-
sive methods account for 43.21% of the mutant testing execution
time [10], which further motivates pursuing this idea.

After identifying the expensive methods, MeMu records a snap-
shot of the state of the unmutated program at the entry and exit
point(s) of the those methods, in the form of input-output pairs
and stores them in a memo-table. When testing the mutants, upon
the invocation of an expensive method, MeMu carries out a light-
weight table look-up to check if a given input has already been
recorded in the memo-table associated with the method. If a match
for the given input is found, then it updates the system state with
the pre-recorded state and bypasses the method body. Otherwise,
i.e., if the input is not in the memo-table and a cache miss occurs,
the method will be as executed as normal.

MeMu is independent of mutant generation or test case selec-
tion/reordering, and it is possible to use MeMu in conjunction with
existing mutation acceleration techniques and analysis tools. In this
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Figure 1: MeMu architecture; processes are represented as double-lined rectangles and information produced/consumed by
processes using dashed rounded rectangles. Each process uses the program source code and tests as input. The two main
components of the framework are memoization component and client component.

paper we link MeMu with PITest [18], a well-known JVM bytecode-
level mutation analysis system. As such, the MeMu prototype is
usable with JVM-based programming languages.

Any mutation analysis acceleration approach faces two main
challenges: (1) limiting the overhead costs; and (2) maintaining true
value of mutation score. In a previous work [8], we highlighted the
challenges and solutions in achieving these goals. Specifically, we
argued that memoizing all the expensive methods results in signifi-
cant runtime overhead caused by loading and deserializing large
memo-table databases and a large number of cache misses. We also
found that memoizing non-deterministic methods adversely affects
the mutation score. We introduced a novel technique, called provi-
sional memoization, to reduce the size of the memo-table databases
and the number of cache misses. Provisional memoization also
identifies certain non-memoizable methods, e.g., those that involve
non-determinism. Furthermore, we applied MeMu on 12 real-world
Java projects and observed that it reduces the mutation analysis
costs by 18.15%, on average, without affecting the mutation score.

The users of mutation analysis tools, test-based automated pro-
gram repair systems, and regression testing tools make the target
user group for MeMu. The source code of the tool is publicly avail-
able on GitHub [9].

2 RELATEDWORK
Traditionally, approaches for reducing mutation analysis costs are
classified into three major categories [19]: (1) do fewer approaches
strive generating/testing as few mutants as possible with minimal
adverse effect on mutation score; (2) do faster approaches are meant
to generate and run mutants as fast as possible; (3) do smarter ap-
proaches are intended to distribute the workload of testing mutants
into several machines or several cores of a single machine, or factor
out shared state between mutant executions and avoid re-executing
them. MeMu fits in the third category as it applies a semantic-
preserving program optimization method (i.e., memoization) on the
unmutated parts of the mutants to avoid re-executing (expensive)
methods for which the state of the system at the entry and exit

point(s) do not change from one execution to another. We discuss
here the most related work to MeMu.

Split-stream [14], and its modern incarnations [22], avoid re-
peated execution of part of the code that is shared between mutants.
Mutations targeting the same statement, result in many mutants
that share code before the mutation impact point. Executing this
portion of the mutants (provided that the program is deterministic)
will always result the same output. Split-stream runs these portions
only once and fork different processes for the each mutant after
the mutation point of impact to test individual mutants.

Just et al. [12] propose three runtime optimizations that result
in 40% speed up of their MAJOR mutation analysis system [13]: (1)
if a mutation does not result in program state change immediately
after the mutation point, it marks the corresponding mutant as
survived, i.e., not killed, and terminates the test execution; (2) even
if a mutation infects the system state in an expression while the
change does not propagate to the subsequent statements, it marks
the corresponding mutant as survived and terminates the test exe-
cution; (3) mutants that infect the state of the system in the same
way should only be executed once.

Since MeMu optimizes the execution of unmutated code and the
memoization does not influence the effect of the mutation, it can
complement existing cost reduction techniques. The information
collection processes can be parallelized with the pre-processing
done by such complementary techniques, in a non-interfering man-
ner, to further speed-up the mutation analysis process.

3 MEMU FRAMEWORK
MeMu [10] is a framework with two main components: the mem-
oization component and the client component (see Figure 1). The
memoization component is responsible for identifying and memo-
izing the expensive methods, and passing this information to the
client component. The client component can be an existing mutation
analysis tool that is modified to intercept the execution of expensive
methods identified by the memoization component so as to check
whether or not it can reuse the already computed results instead of
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re-executing the method. We have implemented a client component
for mutation testing by modifying PITest [18].

We describe the data produced and used (denoted by x ) by
the processes (denoted by y ) in the memoization component and
the client component. In summary, to memoize a method, MeMu
records a snapshot of the state of the unmutated program at the
entry and exit point(s) of the the expensive methods, in the form of
input-output pairs and stores them in a memo-table. The collection
of memo-tables, i.e., the memo-tables database 8 , is then passed to
the client component, which uses it to bypass the execution of the
methods, when a “cache hit” occurs during mutant execution.

We do not want to memoize all the methods, as it leads to large
overhead, and in many cases the execution time of a method may
actually be shorter than a look-up in the memo-table. Hence, as
we discussed before, we focus on memoizing only the expensive
methods. Given a program text 1 comprised of the source code and
a test suite, the framework needs first to determine which methods
to memoize.

3.1 Finding Memoizable Methods
In order to avoid memoizing light-weight methods, MeMu uses
two user-provided parameters: a <threshold> parameter and a
<limit> parameter, that define the expensiveness criterion 6 . It
then attempts to memoize the <limit> most expensive methods,
with execution time longer than <threshold> milliseconds. How-
ever, not all of these expensive methods are memoizable. The frame-
work applies a call graph analysis 1 to obtain the call graph 2 . In
our implementation, we used a precise dynamic call graph construc-
tion algorithm. The call graph is then used by additional analyses
to determine which of the expensive methods should be memoized.

First, the dependency analysis 4 determines the reflexive, tran-
sitive closure of the call graph, which is also sent to the client. The
resulting dependency relations 5 are used for identifying methods
that should not be memoized. If the intercepted method (i.e., the
one to be memoized) depends on a mutated/modified method or
itself undergoes a mutation/modification, then the method shall not
be memoized. Second, the determinacy analysis 2 identifies the
methods that depend on time and/or random generator or return
values computed in such a manner. We refer to these methods as
likely non-deterministic methods. MeMu does not memoize these
methods as they might result in large number of cache misses (due
to the way their input/output is obtained) or change the semantic of
programs. The set of methods that are not likely non-deterministic
(i.e., deterministic methods) 3 are used in the next process. Finally,
the profiler 5 instruments the system to measure the execution
time of the likely deterministic methods and determines the expen-
sive methods 7 that will be memoized. It also records coverage
information of each test case used for excluding unnecessary test
cases, for a faster memoization.

3.2 Memoization
Recording all variables in amemo-tablemay lead to very large tables.
So, before constructing the memo-tables, MeMu filters out fields
that are untouched. The side-effect analysis 3 determines which
method may access which static/instance fields, either directly or by
calling another method. To keep the size of memo-tables small and

optimize table look-up within the client, the framework only uses
the accessed fields 4 . TheMemoizer 6 constructs a minimalmemo-
tables database 8 of the methods that are deemed memoizable in
the previous steps (i.e., the expensive, deterministic methods). This
is done by applying two filtering steps.

First, MeMu determines which methods will not result in failures
whenmemoized. This is achieved through provisional memoization,
which tentativelymemoizes methods and excludes non-memoizable
ones. Specifically, we consider a memoization attempt on a method
as failed if memoizing themethod results in (new) failed tests. In this
way, we can single out non-memoizable methods. Second, before
passing the memo-tables database to the client component, MeMu
removes the methods incurring cache misses while they are tested
against the covering tests. This is done by post-processing the data-
base using the execution information obtained during provisional
memoization.

3.3 Client Component
The client component for MeMu is constructed by modifying PITest
such that it loads the memo-tables database in each mutant test-
ing process that PITest forks, and we instrument the mutant code
such that the memoizable methods do a light-weight check before
proceeding running their bodies. The methods check if they are
mutated or depend on some mutated method. If that is the case, no
memoization shall take place. Otherwise, they do a light-weight
table look-up based on the state of the system at their entry points
and update the system state if such a state have occurred previously.
Then, the method immediately returns without executing its body.

3.4 Implementation
MeMu uses the ASM bytecode manipulation framework [16], and
Java Agent technology [3], for instrumenting the program and
implementing various dynamic analyses. The information collected
from the dynamic analyses are processed using scripts written
in Datalog, for a faster and more maintainable codebase. MeMu
is implemented as a Maven plugin. MeMu’s codebase is publicly
available on GitHub [9].

4 USING THE TOOL
The memoizer component for MeMu is implemented as a one-click
Maven plugin and is publicly available [9]. The executables for the
PITest-based client component are also available as Maven plugins.
The companion website [9] provides detailed instructions on how
to install MeMu and its client component.

After installation, setting up MeMu is as easy as adding the
following XML snippet under the <plugins> tag in the POM file
for the target project.

<plugin >

<groupId >edu.iastate </groupId >

<artifactId >memoizer -maven -plugin </artifactId >

<version >1.0- SNAPSHOT </version >

</plugin >

This will allow invoking the memoizer component on the project.
By default, the memoizer plugin will select top 15 methods that take
10milliseconds ormore asmemoization candidates. To change these
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Table 1: Summary of MeMu options configurable through the POM file

Option Descriptions
<threshold> Threshold in milliseconds; all the methods costlier than threshold shall be considered for memoization (10,

by default)
<limit> Maximum number of methods satisfying threshold to be memoized (15, by default)

<targetClasses> Target production classes to be transformed (by default, ${groupId}*, i.e., all application classes)
<excludedClasses> Target application classes to be excluded from transformation (by default, all test cases are selected, i.e., *Tests,

*Test, *TestCase*)
<targetTests> Target test classes to be included (by default, *Tests, *Test, and *TestCase*, i.e., all classes that end with

Tests or Test, or contain the word TestCase)
<excludedTests> Target test classes to be excluded (empty, by default).

default values, the user can set the values of parameters <limit>
and <threshold>, under the tag <configuration> of the plugin.
Other parameters of the plugin can also be changed. Table 1, lists
all the parameters of the memoizer plugin and their default values.

After setting up the POM file, the memoizer plugin can be in-
voked from command-line using the following command.

mvn edu.iastate:memoizer-maven-plugin:memoize

Please note that all the production and test classes of the project
must be compiled before invoking the above-mentioned command.

PITest’s official website [18] contains details about how to con-
figure it as a Maven plugin, as we refer the reader to the website for
more details. For the purposes of using PITest as a client component
for MeMu, we can use it with its default settings:

<plugin >

<groupId >org.pitest </groupId >

<artifactId >pitest </artifactId >

<version >1.3.2</version >

</plugin >

Invoking PITest should be proceeded as usual [18]:

mvn org.pitest:pitest-maven:mutationCoverage

5 LIMITATIONS AND FUTUREWORK
MeMu employs a combination of static and dynamic analyses that
are overhead to the actual mutation analysis. The example that we
have shipped in the companion website of the project is carefully
crafted to showcase the speed-up gained by applying MeMu. How-
ever, in our previous work [10], we observed that for some Java
projects the overhead outweighs the speed-up that we gained from
memoized mutation analysis.

Applying MeMu on a set of real-world Java projects with many
expensive methods (e.g., projects involving numerous REST API
invocations that cannot be mocked away) is planned as future work.
We believe that with more sophisticated and efficient analyses, this
overhead can be reduced, making MeMu effective on a wider range
of Java projects.

6 CONCLUSIONS
This paper presents the engineering details of MeMu [10], a novel
technique for accelerating mutation analysis through the memoiza-
tion of expensive methods in the program. MeMu’s optimization

strategy is complementary to existing state-of-the-art cost reduc-
tion techniques for mutation analysis. They can be used together
for further optimization. MeMu is publicly available [9].
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