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ABSTRACT
Test-based generate-and-validate automated program repair (APR)
systems often generatemany patches that pass the test suite without
fixing the bug. The generated patches must be manually inspected
by the developers, so previous research proposed various techniques
for automatic correctness assessment of APR-generated patches.
Among them, dynamic patch correctness assessment techniques
rely on the assumption that, when running the originally passing
test cases, the correct patches will not alter the program behavior
in a significant way, e.g., removing the code implementing correct
functionality of the program. In this paper, we propose and evaluate
a novel technique, named Shibboleth, for automatic correctness
assessment of the patches generated by test-based generate-and-
validate APR systems. Unlike existing works, the impact of the
patches is captured along three complementary facets, allowing
more effective patch correctness assessment. Specifically, we mea-
sure the impact of patches on both production code (via syntactic
and semantic similarity) and test code (via code coverage of passing
tests) to separate the patches that result in similar programs and
that do not delete desired program elements. Shibboleth assesses
the correctness of patches via both ranking and classification. We
evaluated Shibboleth on 1,871 patches, generated by 29 Java-based
APR systems for Defects4J programs. The technique outperforms
state-of-the-art ranking and classification techniques. Specifically,
in our ranking data set, in 43% (66%) of the cases, Shibboleth ranks
the correct patch in top-1 (top-2) positions, and in classification
mode applied on our classification data set, it achieves an accuracy
and F1-score of 0.887 and 0.852, respectively.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
For more than a decade, automated program repair [49] (APR) has
been the subject of intense research with many APR techniques
being proposed, and due to its potential in reducing software main-
tenance costs, APR remains an active area of research [65].

In the context of test-based generate-and-validate (G&V) APR
techniques, a patch passing all the test cases is referred to as plau-
sible. A plausible patch is called correct (or genuine) if it actually
fixes the bug, i.e., it complies with the program specification. Since
test suites only partially specify the desired behavior of the system,
APR tools generate many patches that merely pass the available
tests without fixing the bug [49, 78] and such patches are called
test case overfitted or incorrect patches. Manually searching for the
correct patch is a time-consuming activity.

In order to alleviate such manual effort, several techniques for
assessing the quality of generated patches are developed (see §6).
Dynamic patch correctness assessment approaches operate by com-
paring the run-time behavior of the patched program with its un-
patched version. The approaches differ from one another primarily
in the way they capture and quantify the difference in program be-
havior. For example, PATCH-SIM [91] uses path spectra [35] as an
abstraction of the program behavior and utilizes Longest Common
Subsequence algorithm to quantify the differences. Another family
of approaches [6, 95] use dynamically inferred invariants as an
abstraction of the program behavior and rely on syntactic distance
metrics to quantify the differences. In contrast, ObjSim [29] and
CIP [100] quantify the behavior change by comparing system state
snapshots at the exit points of patched methods. All dynamic patch
correctness assessment approaches have one thing in common, in
that they all are based on the assumption that correct patches do
not alter the program behavior significantly, when running the
originally passing test cases [6, 24, 29, 91, 95].

Depending on static or dynamic nature of the technique, patch
assessment can be carried out before or after the patch validation
phase in a test-based G&V APR system (see §2). Patch correctness
assessment could be in the form of ranking or classification. Rank-
ing after patch validation phase makes sense only for APR systems
that do not stop searching after finding the first plausible patch,
while classification can be applied in either case at the cost of possi-
bly leaving the user with the obligation of manually analyzing the
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patches within each class. We argue that there is a need for both
kinds of assessment methods and the quest for fixing more complex
bugs (e.g., by employing an ensemble of existing repair tools, as
in Repairnator [66]) and finding more correct patches within the
search space of existing repair tools (e.g., by forcing the existing
tools to continue searching their repair search space and validating
the generated patches faster, as in UniAPR [8]) necessitates not dis-
missing automated ranking of plausible patches as a topic without
practical importance.

This paper proposes a novel treatment of automated patch cor-
rectness assessment in terms of both ranking and classification.
Similar to existing dynamic approaches [6, 24, 29, 91, 95], the idea
underlying our method is inspired by the competent programmer
hypothesis [20] and previous research that determined that code-
removing program transformations are anti-patterns in the context
of APR [79]. Specifically, we posit that the programmer writes her
program almost correctly insofar as any bug fixing activity involves
small changes to the program text and does not remove code imple-
menting existing desired functionality. As such, we expect a correct
patch to impact production code less than an incorrect patch and
not to decrease code coverage of originally passing test cases by
removing tested program elements that are likely to already com-
ply with the program specification. However, unlike the existing
techniques, we captured the impact of patches along three comple-
mentary facets: syntactic (in terms of textual similarity), semantic
(in terms of similarity of execution traces), and the code coverage
of the originally passing test cases. With this basic idea in mind,
we design and implement Shibboleth, which assesses the quality
of APR-generated patches via both ranking and classification. In
ranking mode, given a collection of patches, the tool groups and
sorts the patches in such a way that groups of patches that are more
likely to be correct appear before the ones that are less likely to
be correct in the fix report. In classification mode, the patches are
categorized into two classes of likely correct and likely incorrect.

We construct a large set of 1,871 APR-generated and human-
written patches, based on data used by previous research and use
this data for the empirical evaluation of Shibboleth. We compare the
ranking capability of Shibboleth with state-of-the-art patch ranking
systems CIP [100] (a patch ranking/classification sub-system part
of ARJA-E [100]) and ObjSim [29], an Ochiai-based [87] ranking
approach, and a random baseline. The results show that, in our
ranking data set, Shibboleth ranks a correct patch in top-1 or top-2
position for 66% of the 197 bugs we studied, outperforming CIP,
ObjSim, Ochiai-based ranking, and the random baseline. We also
evaluate Shibboleth in classification mode by conducting cross
validation of its underlying learning algorithm on our classification
data set. The classification algorithm achieves an accuracy and
F1-score of 0.887 and 0.852, respectively, and outperforms state-of-
the-art PATCH-SIM [91], CIP [100], ODS [97], and the static patch
classification system by Tian et al. [80].

This research work is significant from both theoretical and prac-
tical points of view. Patch overfitting is a challenging problem in
APR, hindering widespread adoption of APR systems in industrial
settings [49]. We propose an effective technique to alleviate this
problem. Our technique, compared to current techniques, relies on
light-weight measures (i.e., taking constant time vs. quadratic time)
making it suitable for practical use-cases. Our large patch data set

is a benchmark, with detailed information about the patches, that
supports advancing software engineering research.

Contributions. This paper makes the following contributions.

(1) A novel technique, and a tool named Shibboleth, for patch
correctness assessment (via ranking and classification) lever-
aging the impact of the patches on both production code and
test suite coverage. Empirical evaluation shows that Shibbo-
leth outperforms state-of-the-art static and dynamic patch
ranking and classification techniques.

(2) A curated and annotated data set of 1,871 APR-generated
and human-written patches.

Our patch data set and software artifacts are publicly available [32].

Paper Organization. The rest of this paper is organized as follows.
A brief overview of APR and a motivating example are given §2. In
§3 we describe our approach in detail. We present the results of our
empirical evaluation in §4. In §5, we mention the trade-offs made
in the design of Shibboleth and discuss its limitations and threats
to validity. We discuss related work in §6, and §7 concludes.

2 BACKGROUND AND MOTIVATION
APR aims at reducing debugging costs by generating high-quality
patches that either directly fix the bugs or help developers during
the course of manual debugging. Depending on the actions taken to
conduct a repair, APR techniques can be categorized into different
classes [49, 65]. The majority of current APR techniques belong to
the search-based class (aka generate-and-validate, or G&V for short)
that attempts to fix the bugs through evolutionary search [2, 48],
heuristic fix templates [17, 31, 53], code grafting [4, 60, 85], or
random mutation [18, 71] and validating the generated patches
using certain checks. The majority of G&V techniques are test-
based [3, 9, 10, 17, 18, 31, 38, 41, 43, 48, 53, 56, 57, 59, 73–75, 85,
93, 94, 100], meaning that they validate the generated patches by
running test suite against the patches, while others are purely
static [27, 34, 63, 82], targeting compilation errors, code smells, or
specific classes of errors, e.g., resource leaks or data races.

Most test-based G&V APR systems are based the following steps.
First, a fault localization algorithm [87] is applied to the buggy
program to find suspicious program elements. Next, the most sus-
picious program elements are transformed based on a variety of
methods (e.g., random mutation [20], code grafting [4], program
synthesis [50], etc.) to generate a pool of program variants. The
available test suite is executed against the program variants and the
ones that pass all the test cases are kept, during the next step. A fix
report containing details about plausible patches is then generated
and presented to the users for further manual inspection.

2.1 Motivating Example
Figure 1 presents a faulty Java program that, given a string s and
a character c, is intended to return true if c occurs within s and
false, otherwise. The figure also lists a test suite with two test cases
that exercise the buggy method contains with different inputs, one
of which reveals the fault, i.e., the missing null-check. T-1 (colored
in green) is a passing test, while T-2 (colored rose) is a failing test
case that results in a NullPointerException (NPE).
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1 class Example {

2 public static boolean contains(String s, char c) {

3 int k = s.length(); // bug: NPE when s == null

4 for (int j = 0; j < k; j++) {

5 if (s.charAt(j) == c) {

6 return true;

7 }

8 }

9 return false;

10 }

11 }

Input Output
Id s c Expected Actual
T-1 “abc” ‘?’ false false

T-2 null ‘?’ false NPE

Figure 1: A Java program with a missing null-check. A test
suite with two test cases T-1 (passing) and T-2 (failing) is
listed to the right of the code.

Patch 1 (correct patch): Patch 2 (incorrect patch):
3 + if (s == null) {

4 + return false;

5 + }

3 + if (c > 0) {

4 + return false;

5 + }

Figure 2: Two plausible patches for the program of Figure 1.
Each patch introduces three new lines of code.

Figure 2 shows two possible patches that a typical G&V APR
tool (e.g., [60]) may produce in an attempt to fix the example code.
While both patches result in a code that passes both T-1 and T-2
(i.e., they are plausible), only one of them is correct (i.e., Patch 1).

By parsing the body of the original version of themethod contains
into tokens and counting the tokens, we get two instances of k,
two instances of s, and so on. The correctly patched version of
contains has two instances of k, three instances of s, and so on,
which yields a cosine similarity of approximately 0.970725 to the
original program. The incorrectly patched version of contains has
two instances of k, two instances of s, and so on, which results in a
cosine similarity of approximately 0.967994 to the original program.
In this particular example, the correct patch was actually more
similar to the original program than the incorrect patch, suggesting
that the correct patch impacts the program text less significantly
than the incorrect one. But there are situations where we might get
equal similarity or the opposite of what we expect. This is why we
need a complementary dynamic metric to measure the impact of
patches on production code.

Looking at the spectrum of JVM bytecode [51] instructions exer-
cised while executing the passing test T-1, we notice that, in the
original program, we get 2 instances of load constant, 6 instances
of load local variable, and so on. In the correctly patched version,
we get 3 instances of load constant, 7 instances of load local vari-
able, and so on. This results in a cosine similarity of approximately
0.982343. Meanwhile, in the incorrectly patched version, we get two
instances of load constant and one instances of each of load local
variable, comparison, and return instructions. In this version, the
rest of the instructions do not appear, indicating that this version
quite dissimilar to the original program with a cosine similarity of
approximately 0.725901. As we can see, in this example, the correct
patch has a more similar execution to the original program than
the incorrect patch.

The branch coverage for the originally passing test case T-1
before patching is

3
4
= 0.75, as both true and false branches of

the for-loop in line 4 are covered and only the false branch of the
if-condition in line 5 is covered. The branch coverage for the test
suite after patching with Patch 1 (the correct patch) increases to
5
6
≈ 0.833, i.e., a delta of 0.083, while it decreases to

1
6
≈ 0.167 after

patching with Patch 2 (the incorrect patch), i.e., a delta of -0.583.
This suggests that the correct patch does not involve removing
functionality that is tested (i.e., desirable), while the incorrect patch
passes the test cases by leaving portions of the code untested.

We suggest using these features to rank and/or discriminate
APR-generated patches. This idea is implemented in the technique
and tool, named Shibboleth, discussed in the rest of the paper.

3 APPROACH
Similar to previous research on patch correctness assessment [6,
24, 29, 91, 95], the main idea behind Shibboleth is inspired by the
competent programmer hypothesis [20], for which we have empiri-
cal evidence due Andrews et al. [1], and code-removing program
transformations being anti-patterns [79]. Specifically, we rely on
the programmer to write her program almost correct, insofar as
any bug fixing activity involves small changes to the program text
and does not remove its desired elements. Desired program elements
(e.g., lines of code, methods, etc.) are the ones whose correctness is
verified or we have some level of confidence in their correctness.
These could be the program elements covered only by the passing
test cases, as they specify desired behavior of the program [87].

However, unlike the existing work, we quantify the size of the
changes due to applying a patch via syntactic and semantic simi-
larity of a patched program to its original, buggy version. Greater
similarity values could mean that the patched code is more likely
to behave like the original program, and large code coverage dif-
ference values could mean that the patch does not delete desired
functionality of the program. Having concrete values representing
the size of changes induced by a set of patches, Shibboleth priori-
tizes the patches that result in large similarity values for production
code and greater difference values (i.e., more positive) for test code.

3.1 Measures
We quantify the amount of deleted desired program elements by
calculating the difference of the code coverage of the originally
passing test cases before and after patching. Among common code
coverage metrics, we choose branch coverage as it subsumes state-
ment coverage, yet it is equally efficient to calculate. BC denotes
the difference in branch coverage of the passing test cases before
and after patching and we use it as a feature to rank and discrimi-
nate the patches. To calculate the syntactic similarity, Shibboleth
computes token-level syntactic similarity of the patched version
of the program with respect to its original version. The basic idea
behind token-level textual similarity is that textually similar pro-
grams tend to be semantically close. This idea forms the basis of a
wide range of techniques for clone detection and code recommen-
dation [42, 58], APR [43, 73], speeding up mutation analysis [101]
and static program analysis [81]. To calculate token-level textual
similarity, Shibboleth parses the original and patched programs
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into tokens and builds vectors of the frequencies of tokens for all
the patched methods. We then calculate cosine similarity of the
resulting vectors, denoted TS, and use it as a feature for ranking, as
well as discriminating patches. We dynamically analyze the behav-
ior of the program before and after patching to directly measure
the behavioral similarity of the patched program to its original ver-
sion. To this end, we calculate the cosine similarity of what we call
Statement-Count Spectra, denoted SCS, for the program before and
after patching. We emphasize that token-level syntactic similarity
and behavioral similarity capture the change to the original pro-
gram from two different perspectives and are complementary to
each other. Combining the two boosts Shibboleth’s precision (see
§4 for more details).

We now explain the rationale behind using SCS as a represen-
tative for program behavior. The operations of a computational
system, e.g., a program 𝑃 , whether it is sequential or concurrent,
can be modeled as a transition system defined as

∐︀𝑄,→, 𝑞0̃︀ (1)

where 𝑄 is a set of states,→⊆ 𝑄 ×𝑄 is a transition relation defined
over the states, and 𝑞0 ∈ 𝑄 is the initial state. Neither 𝑄 nor→ are
restricted to be finite. Given states 𝑞1 and 𝑞2, we think of 𝑞1 → 𝑞2
as an indivisible transition from state 𝑞1 to state 𝑞2. This model is
general enough to capture most notions of sequential and parallel
computation. For sequential programs, given a state 𝑞1, there is at
most one state 𝑞2 with 𝑞1 → 𝑞2, while for concurrent programs,
there might be more than one successor for a given state. The
variable-value bindings in the initial state 𝑞0 can be seen as “inputs”
to the program.

An execution 𝐸 of the program 𝑃 is a (possibly infinite) sequence
of states, starting with the initial state 𝑞0:

𝐸 = 𝑞0, 𝑞1, 𝑞2, . . .

where for each 𝑖 ≥ 0, 𝑞𝑖 → 𝑞𝑖+1. For each input (i.e., initial state) and
each interleaving of the states (in the case of concurrent programs),
we can get a different execution of the program. The set of all possi-
ble executions of a program 𝑃 is often referred to as the behavior of
𝑃 [47], for it captures all possible states and state transitions (hence
the dynamic behavior) of the program.

Each state 𝑞 ∈ 𝑄 in Eq. 1 is a set of variable-value bindings which
can be characterized by a formula in propositional logic, hence, an
execution 𝐸 of the program 𝑃 can alternatively be modeled as a
chain of Hoare triples as follows.

𝐸 = {Φ0}𝑆1{Φ1}𝑆2{Φ2}𝑆3{Φ3} . . . ,

where 𝑆1, 𝑆2, etc., are the statements in 𝑃 . The formula Φ0 specifies
the initial state 𝑞0 and for each 𝑖 ≥ 0, the formula Φ𝑖 is the weakest
precondition of 𝑆𝑖+1 and Φ𝑖+1 is a post-condition of 𝑆𝑖+1. So, for
a given initial state characterized by Φ0, an execution 𝐸 of the
program 𝑃 can be represented more succinctly as

𝐸 = 𝑆1, 𝑆2, 𝑆3, . . . (2)

where 𝑆1, 𝑆2, etc., are the statements in 𝑃 . All the intermediate for-
mulae Φ1, Φ2, etc., can be inferred based on Φ0 and the statements.

𝐸 is a sequence of executed program statements, i.e., an execution
trace. Similarly, the behavior of the program 𝑃 can be defined as the
set of all execution traces of 𝑃 paired with the formulae characteriz-
ing the initial state for each trace. This characterization of program
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Figure 3: Architecture of Shibboleth

behavior forms the basis of a long-standing research in software test-
ing [35, 72] and later in automated program repair [24, 83, 91, 100].
Based on the specific application domain, or simply due to effi-
ciency reasons, an execution trace may be represented in different
ways during profiling [35]. These representations of an execution
trace, and the execution trace itself, are generally referred to as
program spectra [35]. Different program spectra approximate the
program behavior at certain level of abstractions or, as Harrold et
al. state, a program spectrum “characterizes, or provides a signature
of, a program’s behavior” [35]. Thus, it makes perfect sense to use
program spectra as “representatives” of program behavior and use
them to heuristically reason about correctness or the impact of
various patches on a buggy program.

In this paper, we propose a Branch-Count Spectrum (BCS) [35]
for statements, hence the name Statement-Count Spectrum. The
idea is to count the number of times each statement is exercised
during testing and store it in a vector of fixed dimension. This
representation of execution traces, although loses the temporal
relation between the executed statements, still contains information
about the frequency of execution of each statement and is more
informative than the traditional statement coverage. As we will see
in §4, this enables us to accurately classify the patches and achieve
outstanding results compared to state-of-the-art.

3.2 Shibboleth Architecture
The steps taken by Shibboleth to calculate TS, SCS, and BC are
sketched in Figure 3. The buggy and patched versions of the pro-
gram are compiled (step 1○) to obtain class files. The source files are
parsed and analyzed (in step 2○) to obtain TS. The binary class files
are instrumented so as to gather information about the frequency
of each covered instruction, as well as branch coverage ( 3○). The
collected coverage and spectrum information are used to calculate
SCS (in step 4○) and BC (in step 5○). Finally, the three calculated
values are used as features for classification (in step 6○) or ranking
(in step 7○).

In the rest of this section, we present the ranking and classifi-
cation algorithms of Shibboleth. But before that, we introduce a
number of notations in the section that follows so as to simplify
the presentation of the algorithms.
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3.3 Notation
Let 𝑃 be a program (e.g., a Java project) and𝑇✓ be the passing subset
of the test suite accompanying program 𝑃 (e.g., a set of passing JUnit
test methods). We use Π to represent a finite set of patches and
𝜋(𝑃), where 𝜋 ∈ Π, to denote the variant of the program 𝑃 obtained
from applying the patch 𝜋 to it. Operationally speaking, a patch is a
diff file and it can be applied using Git or the UNIX patch command.
Given a patch 𝜋 from our data set, ℓ(𝜋) denotes the ground-truth
label for the patch, with ℓ(𝜋) ∈ {CORRECT, INCORRECT}.

Common to both ranking and the classification subsystems is a
component that calculates syntactic and semantic similarity (i.e.,
TS and SCS), as well as branch coverage (i.e., BC) of the passing
test cases 𝑇✓ with respect to the original program 𝑃 and 𝜋(𝑃) for
a given patch 𝜋 . The BC measure, as introduced in the previous
subsection, is the difference in branch coverage score before and
after patching. In this way, once we fix a program 𝑃 and a set of
passing test cases 𝑇✓, we can think of BC as a function of the
patches, that is to say, we use BC(𝜋) to denote the difference in
branch coverage of the passing test cases executed against 𝑃 and
𝜋(𝑃). Similarly, we use TS and SCS as functions of patches.

3.4 Ranking
The input to the ranking algorithm is a set Π of patches and the
functions BC, TS, and SCS, as defined in the previous section. The
output of the algorithm is a sequence of patches paired with their
ranks, which is sorted in ascending order of the ranks.

Algorithm 1 lists the steps needed for ranking the patches based
on the three observations that we made about the impact of the
correct patches on original programs. The algorithm invokes the
recursive function groupAndSort, which, given a set of patches and
a list of comparators 𝑐1, . . . , 𝑐𝑛 , groups the patches based on 𝑐1 and
sorts the groups also based on 𝑐1. If any tie (a group with two or
more patches) is remaining, the grouping and sorting is repeated
recursively for each group based on 𝑐𝑖 , with 2 ≤ 𝑖 ≤ 𝑛.

A comparator is a function that takes two patches 𝜋1 and 𝜋2 and
returns a negative value, zero, or a positive value depending on
whether 𝜋1 proceeds 𝜋2, 𝜋1 and 𝜋2 coincide, or 𝜋1 comes after 𝜋2,
respectively, in terms of their similarity to the original program or
their impact on branch coverage.

The function groupAndSort depends on a hashtable data struc-
ture, called OrderedMap, whose keys are ordered based on a given
comparator. Lines 18 and 19 do an initial grouping by adding the
patches in the ordered hashtable. Thanks to the selected comparator
𝑐 = head(comparators), after Line 19, the hashtable will be a sorted
table of entries in the form of key-value pairs < 𝜋, 𝑡 > where 𝑡 is a
set of all patches 𝜋 ′ such that 𝑐(𝜋, 𝜋 ′) = 0. Note that 𝜋 ∈ 𝑡 as well,
as we always have 𝑐(𝜋, 𝜋) = 0. Lines 20-26 iterate through ties of
non-trivial size and make recursive calls to the function to break
the remaining ties using the next comparator in the list.

Lines 2-6 define the three comparators with the heuristic order
that we propose. The comparators are defined using lambda no-
tation [70] for the sake of brevity and readability. The ordering
dictated in the list, makes groupAndSort function (called at line 8)
to group and sort the patches (in descending order), first based
on their impact on branch coverage. Then the ties are broken by
grouping and sorting (in descending order), based on token-level

Algorithm 1: Patch ranking in Shibboleth
Input: Patches Π and functions BC, TS, and SCS
Output: Sequence {< 𝜋, 𝑟 >}𝜋∈Π , sorted based on ranks 𝑟 in

ascending order
1 begin
2 Comparators← [

3 𝜆 𝜋1, 𝜋2 . BC(𝜋2) − BC(𝜋1),
4 𝜆 𝜋1, 𝜋2 . TS(𝜋2) − TS(𝜋1),
5 𝜆 𝜋1, 𝜋2 . SCS(𝜋2) − SCS(𝜋1)
6 ]

7 Output← []

8 Ties← groupAndSort(Π, Comparators)

9 rank← 0
10 for Tie in Ties do
11 rank← rank + size(Tie)

12 for 𝜋 in Tie do
13 Output.append(<𝜋, rank>)

14 return Output

15 function groupAndSort(Patches, Comparators):
16 Result← []

17 map← new OrderedMap(head(Comparators))

// Group patches via first element in comparators:

18 for 𝜋 in Patches do
19 map[𝜋]← map[𝜋] ∪ {𝜋}

// Break ties recursively via the next comparator:

20 for <𝜋, Tie> in map do
21 if size(Tie) > 1 ∧ size(Comparators) > 0 then
22 G← groupAndSort(Tie, tail(Comparators))

23 for T in G do
24 Result.append(T)

25 else
26 Result.append(Tie)

27 return Result

similarity. Finally, break any remaining ties are broken by grouping
and sorting (in descending order), based on behavioral similarity.

The intuition behind this ordering comes from the observations
we made about BC, TS, and SCS values: BC is the most effective
measure, while TS and SCS are equally effective in ranking the
patches. We observed that the algorithm is robust to the order of
comparators corresponding to TS and SCS, but the comparator cor-
responding to BC has to appear as the first element in Comparators

so as to achieve the best results. We attribute this to the fact that in
the cases where BC falls short of ranking the correct patch in the
top-1 position, all the patches wind up with equal BC values. Most
of these sets of patches can be handled using TS and SCS.

Lastly, lines 10-14 produce the output list by giving the patches
within each group the worst-case ranking. By the worst-case rank-
ing, we mean that if we encounter a tie of size 𝑘 and there are𝑚
patches ranked before them, each patch within the tie shall receive
a rank of𝑚 + 𝑘 .
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3.5 Classification
For classification purposes, Shibboleth can use any binary classifier,
however, as we will see in §4, compared to five other classifiers
we experimented with, a Random Forest classifier [37] with 100
Decision Trees [88] as the base estimators (default configuration
of Python’s scikit-learn machine learning library [76]), yields the
highest accuracy and F1 values. The classifier model is constructed
during a training phase, which uses a training data set of the fol-
lowing form

{∐︀BC(𝜋),TS(𝜋), SCS(𝜋), ℓ(𝜋)̃︀ ⋃︀ 𝜋 ∈ Π},

where Π is a set of 1,871 patches in our data set.
In other words, to obtain the training data points, for each patch

𝜋 , we bundle all the following information togetherwith the ground-
truth label for the patch: (1) difference in the branch coverage of the
originally passing test cases before and after patching the program
with 𝜋 ; (2) the token-level cosine similarity of the body of the
method patched by 𝜋 in the original program 𝑃 and its patched
version 𝜋(𝑃); (3) the cosine similarity of Statement-Count Spectrum
vectors calculated under the originally passing test cases. The user
is given the option of down-sampling the training data set to make
it balanced. Once the model is trained, it can be used to classify
future patches. Classification works as follows. Given a program 𝑃

and patch 𝜋 targeting method𝑚 of 𝑃 , Shibboleth constructs tuple of
feature values ∐︀BC(𝜋),TS(𝜋), SCS(𝜋)̃︀. The pre-trained classifier
is then applied to the tuple to predict the label. The predicted label
is returned as the output of the classification algorithm.

3.6 Implementation
The current implementation of Shibboleth targets Java [33], but
in the approach design we did not make any assumption about
the programming language and we emphasize that the technique
is programming language agnostic and it can be implemented for
other programming languages with some engineering effort.

Shibboleth uses the ASM bytecode manipulation framework [68]
and relies on Java Agent technology [67] to instrument the target
program and calculate statement count spectra and branch cov-
erage. To minimize the need for running test cases, Shibboleth
calculates method coverage information before profiling and only
runs the covering passing test cases for calculating statement count
spectra and branch coverage. Shibboleth also calculates statement
count spectra and branch coverage both at the same time within a
single JVM session. To calculate textual similarity, we used the Java
Parser library [40] to parse the program, before and after patching,
into tokens and count the tokens to obtain frequency vectors before
calculating their cosine similarity. For implementing the ranking
subsystem, as ordered hashtables, we use TreeMap, which is based on
an efficient red-black tree algorithm [12] and is available within the
JDK standard library. For implementing the classification subsys-
tem, we use Python’s scikit-learn machine learning library [76].
Shibboleth is implemented as a one-click Maven-plugin, as well as
a command-line tool, and it is publicly available [32].

4 EMPIRICAL EVALUATION
We perform an empirical evaluation of Shibboleth, comparing its
ranking and classification performance with a set of state-of-the-art

Table 1: APR systems that generated the patches in our data
set, categorized into three classes of heuristic, semantic-
based, and template-based techniques

Class APR Tools

Heuristic

ARJA [99], ARJA-E [100], jGenProg [60],
jKali [60], jMutRepair [60], SimFix [41],

CapGen [85], RSRepair [71], SequenceR [10],
ELIXIR [73], DeepRepair [86], ssFix [90],
PraPR [31], 3sFix [11], GenProg-A [99],

and Hercules [74]

Semantic-based ACS [93], NOPOL [94], DynaMoth [23],
Cardumen [61], JAID [9], and SketchFix [38]

Template-based kPAR [52], AVATAR [54], FixMiner [46],
TBar [53], SOFix [55], ConFix [44],

and HDRepair [17]

approaches. Shibboleth performs both ranking and classification,
so we evaluate these separately. Specifically, we aim to answer the
following research questions.
● RQ1: How does Shibboleth perform when ranking patches?
● RQ2: How does Shibboleth performwhen classifying patches?

4.1 Data Set of Patches
We constructed a patch data set by combining the set of human-
written patches from the Defects4J v2.0.0 bug database [19] and
four curated patch data sets, used in recent studies [84, 91, 97, 100],
generated by 29 APR systems (see Table 1). Combining the five
data sets resulted in a total of 3,072 patches consisting of 1,684
patches labelled as correct and 1,374 patches labelled as incorrect. 14
of the patches were labelled as unknown; these patches are from the
data set of Xiong et al. [91]. Human-written patches are generally
regarded as correct-by-definition [48, 49, 64, 78] and APR-generated
patches were analyzed and labelled in previous works.

These data sets were curated by different research groups at
different times, so they overlap, hence we identified and excluded
duplicate patches. To reduce manual work in duplicate elimination,
we used a script to automatically remove patches that were identical
to one another ignoring any white-spaces. We were able to remove
487 patches with the help of this script. Automatic duplicate elimi-
nation is performed by computing the SHA-1 hashcode of the body
of the diff files and keeping only one copy of the set of patches with
the same hashcode. This duplicate elimination method cannot elim-
inate semantically equivalent patches, e.g., the expressions a+b and
(a)+b are semantically equivalent while they have different SHA-
1 hashcodes. Therefore, a manual inspection is necessary, hence
we manually sieved through the remaining patches and removed
obvious duplicates that our script was unable to detect due to the
unpatched code surrounding the patched lines, extra parentheses
around expressions, etc.

We further excluded 14 patches labelled as unknown. We also
excluded Defects4J patches that involved creation/removal of files,
as annotating these patches requires substantial knowledge about
the code base and deeper analyses, and neither our tool nor are
any of state-of-the-art systems capable of handling such patches.
For the same reason, we excluded all of the patches that involved
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creation/deletion of classes or methods. Lastly, we excluded the
patches that resulted in compilation errors, those that did not pass
all the test cases, and those that had compatibility issues with the
current implementation of Shibboleth and/or other studied tools.

After this pre-processing, we were left with 1,871 patches, 778 of
which are labelled as correct while 1,093 are labelled as incorrect.
All these patched are generated for Defects4J bugs, and each bug
has one correct patch and one or more incorrect patch(es) generated
for it. We have annotated the patches with additional information
that can come in handy in APR research. Here is an outline of the
information accompanying each patch in the data set and a brief
discussion on their possible applications:
● The Defects4J bug id targeted by the patch,
● Package name, source file name, line number and line range
of the patched location, which can be useful for source-level
analysis of the patched code,
● Ground-truth label of the patch (i.e., correct/incorrect),
● Fully qualified names of the patched methods, which can be
useful for bytecode-level analysis of the patched code,
● The Ochiai suspiciousness values of the patched methods,
● The name of the generating APR tool (or N/A in cases where
the patch is human-written),
● Provenance information [7], i.e., which data set each patch
comes from and the original identifier of the data point in
that data set. Using this information, the name and contact
information of the original curators can be traced so that
any doubts about the validity of the labels can be disputed.

To answer RQ2, we used all the 1,871 patches in our finalized
data set. For RQ1, however, we further excluded the correct patches
that were not paired with any incorrect patches, as ranking a single
correct patch does not make sense. This resulted in 1,290 patches
among which 197 are labelled as correct and the rest 1,093 are
labelled as incorrect.

4.2 Baseline Approaches
We compare Shibboleth’s ranking performance (i.e., RQ1) with the
random baseline obtained via hypergeometric probability [5] of a
correct patch appearing in top-1 or top-2. We also compare Shibbo-
leth with the following state-of-the-art patch ranking techniques:
● Latest version of ObjSim [30], capable of handling multi-
hunk patches studied in this paper,
● CIP [100], the patch ranking/classification system, part of
ARJA-E [100], and
● Ranking based on Ochiai suspiciousness values [87].

ObjSim and CIP are object similarity-based approaches, i.e., they
quantify behavior change between the patched version and the
original version of the program by comparing a system state snap-
shot at the exit points of the patched methods, represented as object
graphs. The two systems use similar functions for quantifying the
difference between system state snapshots. However, ObjSim takes
the effect of both passing and failing tests into account and ana-
lyzes several past snapshots, while CIP focuses on passing tests
only and takes only the last snapshot into account. Furthermore,
CIP ranks the patches by first classifying them into two groups
of likely correct and likely incorrect patches. The block of likely
correct patches comes before the block of likely incorrect patches

in the fix report, and the latter is sorted based on three heuristics
in tandem to rank and break the ties. We refer the reader to the
original publications [29, 100] for more details.

Ochiai-based fault localization is employed by virtually all test-
based G&V APR systems, which affects their effectiveness [52].
APR tools generally transform the most suspicious program ele-
ments [49, 52], i.e., Ochiai suspiciousness values are (indirectly)
used for ranking. Therefore, by studying Ochiai-based ranking
we can gain an understanding on how much improvement each
ranking system brings about, compared with no ranking in place.

We compare Shibboleth’s classification performance (i.e., RQ2)
with the following state-of-the-art patch classification techniques.
● PATCH-SIM [91], a dynamic patch classification system
based on complete path spectra,
● CIP [100] with ranking information discarded,
● The static patch classification system introduced by Tian et
al. [80], and
● ODS [97], a static patch classification technique based on
4,199 source code features.

PATCH-SIM records complete path spectra [35] (i.e., induced by
the sequence of instructions executed) before and after patching
running passing and failing tests. It then uses the Longest Com-
mon Subsequence (LCS) algorithm [12] to calculate the distance
between sequences before and after patching; it takes the average
distance for the passing test cases, and takes the maximum distance
for failing tests. The tool filters out the patches that result in a
distance value below a certain threshold. PATCH-SIM filters out
more incorrect patches with the help of automated test case gener-
ation [69]. We postpone studying the effect of test case generation
on the performance of Shibboleth for future work. For the time
being, we use the default configuration of PATCH-SIM, namely
without test case generation, for the sake of a fair comparison.

Tian et al. [80] revisit the idea of using embeddings instead of fea-
ture engineering [14] to avoid possible overfitting that techniques
like ODS are susceptible to. The system combines BERT [21] with a
Logistic Regression classifier [39] to classify the patches statically.

We emphasize that the list of related work (both for ranking and
classification) studied in this work is not exhaustive. We focus our
evaluation only on these techniques, for they each have a prototype
implementation, which is publicly available or the data they were
evaluated on is part of our patch data set. Re-implementing other
(currently unavailable) techniques and comparing them against
Shibboleth will be part of future work.

4.3 Performance Measures
4.3.1 Ranking Measures. For assessing Shibboleth’s ranking per-
formance (i.e., RQ1) we follow the convention of using worst-case
ranking and counting the number of correct patches that appear
in the top-𝑁 position. This measure has been widely used in fault
localization research [87], and it lends itself naturally for assess-
ing the performance of patch ranking systems, as well. Existing
studies [45] showed that over 70% of developers inspect only the
top-5 ranked elements. However, we focus on the top-1 and top-2,
to assess the performance of the patch ranking systems. The reason
that we are not focusing on top-5 or higher N-values is that our data
set has some cases with fewer than five patches per bug. However,
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Table 2: Ranking results per project for the four ranking
schemes TS, SCS, BC, and Shibboleth

Project #Pl #C #I TS SCS BC Shibboleth

Chart 201 19 182 Top-1 4 10 6 11
Top-2 7 14 6 14

Closure 269 64 205 Top-1 18 10 23 27
Top-2 41 32 41 47

Lang 220 35 185 Top-1 10 12 10 14
Top-2 21 21 19 22

Math 541 67 474 Top-1 22 23 15 27
Top-2 36 35 26 38

Mockito 2 1 1 Top-1 0 1 0 1
Top-2 1 1 1 1

Time 57 11 46 Top-1 2 4 4 5
Top-2 7 8 7 8

Total 1290 197 1093 Top-1 58 56 60 85
Top-2 100 113 111 130

*Column # Pl. lists total number of plausible patches, # C lists number of patches labelled as correct,
and # I lists the number of incorrect patches. The rest of columns report number of correct patches

that appear in top-1/top-2 position.

there are at least two patches for every bug in the data set. The
measures are a proxy estimating developer effort. The number of
top-1 patches indicates that developers only need to inspect one
patch to find the correct one for that bug, while the number of top-2
patches indicate that for those bugs, the users need only to inspect
two patches. The systems with higher top-1 and top-2 values are
considered better.

4.3.2 Classification Measures. Following previous work in patch
correctness assessment [80, 84, 91, 97], wemeasure the accuracy and
F1 score (as a representative of precision and recall) for assessing
the Shibboleth’s classification performance (i.e., RQ2), which are
defined as follows:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3)

F1 =
𝑇𝑃

𝑇𝑃 + 0.5(𝑇𝑃 + 𝐹𝑁 )
(4)

In the definitions above, 𝑇𝑃 (true positive) denotes the number
of times a correct patch is identified as correct, 𝑇𝑁 (true negative)
denotes the number of times an incorrect patch is identified as in-
correct, 𝐹𝑃 (false positive) denotes the number of times an incorrect
patch is identified as correct, and 𝐹𝑁 (false negative) denotes the
number of times a correct patch is identified as incorrect. Higher ac-
curacy and F1 score indicate a better performance. From a practical
point of view, the goal of a patch classifier is to filter out as many
incorrect patches as possible, while avoiding the missclasification
of correct patches. In the cases where there is more than one cor-
rect patch, it is acceptable to have false positives, for maximizing
the true negatives. Hence, existing research [80, 84, 91, 97] also
analyzed the classification performance by comparing the values
of 𝑇𝑁 and 𝑇𝑃 , which we also do when answering RQ2.

4.4 Results
We present the results for each research question.

Table 3: Shibboleth versus state-of-the-art patch ranking tech-
niques and a random baseline on the data set of Table 2

Project Shibboleth CIP ObjSim FL Rand (avg)

Chart
Top-1 11 2 4 3 2.4
Top-2 14 6 8 6 4.8

Closure
Top-1 27 1 17 19 16
Top-2 47 24 36 38 32

Lang
Top-1 14 2 2 1 7
Top-2 22 17 15 12 14

Math
Top-1 27 8 12 10 13.4
Top-2 38 27 28 30 26.8

Mockito
Top-1 1 1 1 0 0.5
Top-2 1 1 1 1 1

Time
Top-1 5 5 3 3 3.7
Top-2 8 8 6 5 7.3

Total Top-1 85 19 39 36 43
Top-2 130 83 94 92 85.9

4.4.1 Answering RQ1 (Shibboleth’s Ranking Performance). We car-
ried out our ranking analysis on 1,290 patches, wherein every cor-
rect patch is paired with at least one incorrect patch.

As described in the previous section, we want to rank the patches
in descending order, based on TS, SCS, and BC values. These indi-
vidual features result in 58 (100), 56 (113), and 60 (111), respectively,
correct patches in top-1 (top-2) position (see Table 2). Figure 4 shows
the overlap between the three measures for the top-1 ranks. We
conclude that the three measures are complementary in that there
are patches that only a certain feature can rank in top-1 position.
This motivated us to combine these features and rank more patches
in the top-1 (and top-2) position. Sorting and ranking the patches
first according to BC and breaking the ties using TS and then using
SCS results in the best performance (i.e., 85 top-1 and 130 top-2),
hence we denote this combination as Shibboleth. Table 2 shows the
performance of all four ranking schemes. According to the table,
the combined ranking scheme (i.e., Shibboleth) consistently outper-
forms the single measure-based ranking schemes both in terms of
top-1 and top-2.

SCS

28

35

16

11 6
8

TS

BC

21

Figure 4: Distribution of bugs wherein correct patches are
ranked in top-1 position using individual features.

Table 3 compares Shibboleth with state-of-the-art ranking tech-
niques CIP, ObjSim, Ochiai fault localization-based ranking, and a
random baseline based on hypergeometric probability. The results
indicate that Shibboleth outperforms other ranking system, and the
random baseline, across all of the Defects4J projects.
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Table 4: 10-fold cross validation of six machine learning al-
gorithms using Shibboleth. Acc denotes Accuracy.

Learner TP (avg) TN (avg) FP (avg) FN (avg) Acc F1
AdaBoost 66.1 64.4 13.4 11.7 0.839 0.838

Decision Tree 65.7 64.8 13 12.1 0.839 0.838
Logistic Regression 69.3 31.2 46.6 8.5 0.646 0.548

Naïve Bayes 73.4 56.2 21.6 4.4 0.833 0.812
Random Forest 105 60.9 16.9 4.3 0.887 0.852

SVM 72.7 31.6 46.2 5.1 0.67 0.552

Shibboleth ranks a correct patch in the top-1 (top-2) posi-
tion for 43% (66%) of the bugs and it outperforms state-of-
the-art patch ranking techniques.

4.4.2 Answering RQ2 (Shibboleth’s Classification Performance). We
use the three features TS (textual similarity), SCS (behavioral simi-
larity), and BC (branch coverage delta) for classifying patches as
described in §3. With these features we build six Shibboleth classi-
fiers, using different machine learning algorithms: AdaBoost [26],
Decision Tree [88], Logistic Regression, Gaussian Naïve Bayes Clas-
sifier [39], Random Forest Classifier, and Support Vector Machines
(SVM) [13]. We used the 1,871 patches described in §4.1 and per-
formed a 10-fold cross validation to assess the performance of the
classifiers. To compensate for the imbalance in our data set, we used
undersampling [36] via NearMiss class in Python’s scikit-learn li-
brary [76]. For all of the learners, except for AdaBoost, we used
scikit-learn’s default hyper-parameters. AdaBoost performed best
with 45 Decision Trees.

Table 4 reports the performance of the six classification algo-
rithms as measured by accuracy and F1 score. The table also lists
average𝑇𝑃 ,𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 obtained from 10-fold cross validation.
Since Random Forest performs best among other algorithms, we
use this algorithm in Shibboleth’s classification subsystem.

We compare Shibboleth with state-of-the-art static and dynamic
patch classification systems, namely ODS [97] and the static ap-
proach of Tian et al. [80], named BERT-LR, and the dynamic patch
classification systems PATCH-SIM [91] and CIP [100].

Table 5: Comparing Shibboleth (with Random Forest as its
underlying classifier), PATCH-SIM, CIP, BERT-LR, and ODS
using 130 patches.

Shibboleth PATCH-SIM CIP BERT-LR ODS
TP 22 (23) 28 (29) 25 (26) 28 (29) 23 (24)
TN 97 (101) 58 (62) 37 (37) 42 (44) 63 (70)
FP 5 (9) 44 (48) 65 (72) 60 (66) 39 (40)
FN 6 (6) 0 (0) 3 (4) 0 (0) 5 (5)
Acc 0.915 (0.892) 0.662 (0.655) 0.477 (0.453) 0.538 (0.525) 0.662 (0.676)
F1 0.8 (0.754) 0.56 (0.547) 0.424 (0.406) 0.483 (0.468) 0.511 (0.516)

* The values in parentheses correspond to using 139 patches, reported in previous research, which
include 9 duplicates. Acc denotes Accuracy.

Unfortunately, due to environment setup and high computational
requirements of PATCH-SIM, we could not run it on the entire data
set of 1,871 patches. Therefore, following recent works [80, 97], we
reused the published results of PATCH-SIM in our experiments,
instead. The published evaluations used 139 patches, which are
part of our data set. Among these 139 patches, there are 9 duplicate

patches [80, 84], which we eliminate them from the evaluation.
We trained Shibboleth on 1,160 patches (i.e., 1,871 from which 130
patches are excluded) and used the 130 data points as test data. We
ran BERT-LR [80] and CIP [100] on the 139 data points.

In order to facilitate easier comparison with previously published
results [80, 97], we include the classification results on 139 patches
(including the 9 duplicates), but we report them in parentheses.

Table 5 reports the performance of Shibboleth, compared with
the state-of-the-art static and dynamic techniques, as measured by
𝑇𝑁 , 𝐹𝑃 , 𝐹𝑁 , and 𝑇𝑃 , as well as accuracy and F1 score. As we can
see from the table, Shibboleth correctly classifies the majority of
the patches, and outperforms all the baseline techniques.

Random Forest is the best model to use with Shibboleth and
it outperforms state-of-the-art static and dynamic patch
classifiers.

5 DISCUSSION
When designing or analyzing patch correctness assessment tech-
niques, classification accuracy is only one dimension to consider.
The usability, robustness, and efficiency of the techniques are also
important. While these depend on implementation decisions, they
are also direct consequences of the design decisions. For example,
dynamic techniques tend to have relatively high accuracy, which
comes at the expense of efficiency. Conversely, static techniques are
often much faster, yet less precise. Using complex machine learning
models bring additional complexities related to the training of the
models [80].

Our aim with Shibboleth is to strike a balance between these
competing requirements. Shibboleth is a hybrid technique that
blends features both from production code and test code, and can
be implemented quite efficiently with minimal overhead on test
execution. When computing the branch coverage, as well as syn-
tactic and semantic similarity, for the 1,871 patches, Shibboleth has
a small memory footprint, and we observed an overhead of only
10.24% on test execution.

In contrast, PATCH-SIM relies on detailed complete path spectra
and the LCS algorithm (with a non-linear time and space com-
plexity [12]). Existing research [84, 97, 100] reported that running
PATCH-SIM is computationally intensive. However, on the 130
data points that we reported, PATCH-SIM achieves better precision
compared to other techniques, except Shibboleth.

Despite relying on code embeddings provided by BERT [21],
BERT-LR, being a purely static technique is probably the most
efficient of the compared approaches, as it only parses the patch
files and makes comparisons. BERT-LR also suffers from lower
precision than PATCH-SIM.

We consider the Shibboleth as the “sweet spot” between the
extremes: it achieves better accuracy than the dynamic and static
competitors, while maintaining a low computational complexity
(calculating TS is linear in the size of the program and BC and SCS
are computed in constant time and space) and runtime overhead, to
the extent that, from the point of view of a user, ranking/classifying
patches using Shibboleth takes more or less the same time as one
execution of the test suite.
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5.1 Limitations
Given 𝑛 copies of a simple statement (i.e., a statement without
conditionals) 𝑆 in a program, we can generate an arbitrary number
of patches, which Shibboleth will not be able to distinguish, as
follows. Increase the number of copies of 𝑆 to𝑛+𝑘 times or decrease
them to 𝑛 − 𝑘 times, with 𝑛 − 𝑘 > 0. Such patches amount to points
(i.e., BC, TS, and SCS triples) that are along the same direction (i.e.,
they are on the same vector), with equal cosine similarity, hence
Shibboleth will not differentiate them. Despite this shortcoming of
our approach, we did not find any pair patches among the studied
1,871 patches that fall in the “blind spot” of Shibboleth.

5.2 Threats to Validity
Like most empirical evaluations, our results and conclusions are
impacted by our design decisions and are subjects to certain threats
to validity, which we discuss here.

There is an implicit assumption behind dynamic patch correct-
ness assessment approaches [29, 91, 100] that the computation is
deterministic. Non-deterministic behavior, whether it is intended
or not, can cause problems for dynamic techniques. As an approach
that relies on dynamic information, Shibboleth is not immune to
the problem caused by non-determinacy in programs. To reduce the
effects of this threat, we measured coverage multiple times to make
sure that the fluctuations in the code coverage was due to patching
and not to some other factor. We compared code coverage before
patching tomake sure that they are the same. Our conclusions about
the Shibboleth’s ranking and classification performance depends on
the measures we use to assess the performance. To minimize bias
in our evaluation, we used a set of measures commonly used in ex-
isting related work (see §4.3). In addition, we drew our conclusions
on Shibboleth’s performance after comparing it with that of several
existing approaches that have available implementations or their
published results intersects our data set (see §4.2). Comparing with
additional approaches is subject of future work. The generalization
of our conclusions depends on the data we used. We do not have
a working definition of representative sample for patches, but we
made efforts to ensure that the data we used in the evaluation is
as representative as possible with minimizing potential biases: our
patch data (see §4.1) is a superset of data used in previous related
research, and the patches come from six different Java systems pro-
duced manually (presumably by different developers) or generated
by 29 different APR tools.

6 RELATEDWORK
In this section we discuss how Shibboleth fits among the APR-
related techniques for patch assessment using ranking and classifi-
cation.

6.1 Prioritization/Ranking
Various APR techniques use static or dynamic methods to prioritize
patches for patch validation or rank the plausible patches for easier
manual inspection. Virtually all test-based G&V techniques trans-
form the most suspicious program elements (typically measured
by spectrum-based Ochiai suspiciousness values [87]) to generate
patches [52], thereby inducing an ordering based on Ochiai suspi-
ciosness value of the patched location among the pacthes. Some

techniques, notably PraPR [31], mutate all locations with non-zero
suspiciousness values and rank plausible patches based on Ochiai
suspiciosness value of the patched locations, after the fact. Our
experiments show that Shibboleth outperforms Ochiai-based rank-
ing. S3 [16], DirectFix [62], and Qlose [24] use static syntactic and
semantic features to quantify proximity of generated patch to the
original program and prioritize the patches that are close to the
original program over the ones that involve significant modifica-
tions. Prophet [57], ELIXIR [73], and ODS (ranking mode) [97] use
pre-trained statistical models to rank the patches based on syntactic
features. In this paper, we focus on ranking systems that are pub-
licly available, or for which published results are reusable, and leave
re-implementing ranking systems based on the static features used
in aforementioned techniques as a future work. ObjSim [29] and
CIP [100] are dynamic ranking techniques that quantify the behav-
ior change by comparing system state snapshots at the exit points
of patched methods. Shibboleth (in ranking mode) outperforms
ObjSim and CIP, while it is computationally less demanding.

6.2 Classification
6.2.1 Static. Tan et al. [79] propose anti-patterns to avoid incor-
rect patches in test-based G&V APR techniques. As shown by a
recent study [84] anti-patterns alone are not accurate enough and
might have destructive effects by dismissing many correct patches,
not to mention that some of the rules listed in [79] are not au-
tomatable. Our approach is in part inspired by anti-patterns in
that we deprioritize patches that decrease code coverage. Ye et
al. [97] introduce ODS implementing a machine learning algorithm
which is an ensemble model based on 4,199 source code features.
ODS (in classification mode) achieves better precision compared
to dynamic patch classification technique PATCH-SIM [91] and it
is significantly faster. Since ODS depends on thousands of hand-
crafted feature, the resulting model is susceptible to the overfitting
problem [14, 80]. Csuvik et al. [14] propose to use source code em-
bedding methods instead of performing feature engineering. Tian et
al. [80] revisit this preliminary idea and show that the technique is
as effective as PATCH-SIM [91] and it outperforms ODS. Shibboleth
correctly classifies the majority of the patches and it outperforms
the technique introduced in [80].

6.2.2 Dynamic. PATCH-SIM [91] is the state-of-the-art dynamic
patch classification technique, which quantifies program behavior
changes by computing LCS distance of complete path spectra [35]
before and after patching. It uses a heuristic cut-off threshold to
filter out the patches that fall below certain level of similarity to
the original program. CIP [100], which uses a two-tiered ranking
system (classification first and then ranking of likely incorrect
patches) has been evaluated as a patch classification system also.
Although CIP is able to discriminate certain patches that techniques
like PATCH-SIM are unable to distinguish and it is more efficient
than PATCH-SIM, CIP is less effective than PATCH-SIM in terms
of accuracy and precision [100].

A family of approaches [6, 22, 95] use dynamically inferred in-
variants (e.g., using Daikon [25]) as an abstraction of the program
behavior and use syntactic distance metrics to quantify the differ-
ences. However, inferring invariants is computationally demanding
and off-the-shelf tools are still in their infancy [95].
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DiffTGen [89] helps researchers classify the patches generated
by their APR systems into plausible and genuine. In order to con-
duct classification, DiffTGen needs a human-written patch as a
reference. The tool also relies on the end-user to provide oracles for
the generated test cases based on the observed semantic differences.
DiffTGen and Shibboleth are related in that they both focus on
the test suite adequacy. However, Shibboleth and DiffTGen pur-
sue fundamentally different goals. Shibboleth is a technique and
a fully automatic tool that aims to improve the usability of APR
systems in real-world applications. DiffTGen is a manual tool in-
tended to help APR researchers in classifying generated patches
with more confidence, which has gained success as witnessed by
recent studies [15, 98].

A group of techniques [28, 96] apply fuzzing methods to filter
out the patches that crash in various forms. Although such ap-
proaches work satisfactorily for the APR systems targeting C/C++
programming language, they are not as effective in the context of
managed programming languages like Java [91]. Generalizing these
techniques with inferred and/or user-defined assertions would be
an interesting topic to explore in the future.

Most recently, Shariffdeen et al. [77] present CPR for detecting
incorrect patches patches through systematic exploration of the
patch space and input space via concolic path exploration.

6.2.3 Hybrid. Wang et al. [84] propose combining the static fea-
tures of S3 [16], the complete path spectra similarity computed
by PATCH-SIM [91], and the anti-patterns [79] to obtain an inte-
grated model that is more effective than any individual technique.
PATCH-SIM as stated in its GitHub repository [92], and reported by
at least three studies [84, 97], is computationally demanding. Since
the integrated model of Wang et al. depends on PATCH-SIM, the
model suffers from the same performance bottleneck. In this work,
we complement previous studies by taking into account static and
dynamic measures from both production and test code to assess
correctness of the patches. We plan re-implementing the model by
Wang et al. and comparing with Shibboleth in a future work.

7 CONCLUSIONS
Shibboleth is a novel technique for patch correctness assessment
which, unlike existing patch evaluation approaches, takes into ac-
count the impact of patches on both production and test code and
it relies on a simpler set of assumption. Shibboleth also relies on
light-weight measurements, making it computationally efficient.
Our empirical evaluation with 1,290 patches showed that Shibbo-
leth ranks a correct patch in the top-1 (top-2) position for 43% (66%)
of the bugs outperforming state-of-the-art approaches. When used
as a classifier on 1,871 patches, Shibboleth achieves an accuracy
and F1-score of 0.89 and 0.85, respectively, thereby outperforming
sate-of-the-art patch classification techniques.
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