Can Automated Program Repair Refine Fault Localization? A Unified Debugging Approach

Yiling Lou†
HCST, CS, Peking University
Beijing, China
yiling.lou@pku.edu.cn

Ali Ghanbari
Xia Li
Lingming Zhang‡
University of Texas at Dallas
Texas, USA
{Ali.Ghanbari,Xia.Li3,lingming.zhang}@utdallas.edu

Haotian Zhang
Ant Financial Services Group
Hangzhou, China
jingyun.zht@antfin.com

Dan Hao‡
Lu Zhang
HCST, CS, Peking University
Beijing, China
{haodan,zhanglucs}@pku.edu.cn

ABSTRACT
A large body of research efforts have been dedicated to automated software debugging, including both automated fault localization and program repair. However, existing fault localization techniques have limited effectiveness on real-world software systems while even the most advanced program repair techniques can only fix a small ratio of real-world bugs. Although fault localization and program repair are inherently connected, their only existing connection in the literature is that program repair techniques usually use off-the-shelf fault localization techniques (e.g., Ochiai) to determine the potential candidate statements/elements for patching. In this work, we propose the unified debugging approach to unify the two areas in the other direction for the first time, i.e., can program repair in turn help with fault localization? In this way, we not only open a new dimension for more powerful fault localization, but also extend the application scope of program repair to all possible bugs (not only the bugs that can be directly automatically fixed). We have designed ProFL to leverage patch-execution results (from program repair) as the feedback information for fault localization. The experimental results on the widely used Defects4J benchmark show that the basic ProFL can already at least localize 37.61% more bugs within Top-1 than state-of-the-art spectrum and mutation based fault localization. Furthermore, ProFL can boost state-of-the-art fault localization via both unsupervised and supervised learning.

†This work was mainly done when Yiling Lou was a visiting student in UT Dallas. HCST is short for Key Lab of High Confidence Software Technologies, MoE, China.
‡Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:

1 INTRODUCTION
Software bugs (also called software faults, errors, defects, flaws, or failures [74]) are prevalent in modern software systems, and have been widely recognized as notoriously costly and disastrous. For example, in 2017, Tricentis.com investigated software failures impacting 3.7 Billion users and $1.7 Trillion assets, and reported that this is just scratching the surface — there can be far more software bugs in the world than we will likely ever know about [70]. In practice, software debugging is widely adopted for removing software bugs. However, manual debugging can be extremely tedious, challenging, and time-consuming due to the increasing complexity of modern software systems [68]. Therefore, a large body of research efforts have been dedicated to automated debugging [8, 34, 52, 59, 68].

There are two key questions in software debugging: (1) how to automatically localize software bugs to facilitate manual repair? (2) how to automatically repair software bugs without human intervention? To address them, researchers have proposed two categories of techniques, fault localization [5, 14, 30, 42, 51, 80, 81] and program repair [32, 36, 38, 44, 45, 60, 61, 72]. For example, pioneering
We further investigate the impacts of various experimental con-

strue automated software debugging for more details [50, 76]. To date, unfortunately, although debugging has been extensively studied and even has drawn attention from industry (e.g., FaceBook [47, 66] and Fujitsu [65]), we still lack practical automated debugging techniques: (1) existing fault localization techniques have been shown to have limited effectiveness in practice [56, 77]; (2) existing program repair techniques can only fix a small ratio of real bugs [20, 29, 73] or specific types of bugs [47].

In this work, we aim to revisit the connection between program repair and fault localization for more powerful debugging. We observe that the current existing connection between fault localization and program repair is that program repair techniques usually use off-the-shelf fault localization techniques to identify potential buggy locations for patching, e.g., the Ochiai [5] SBFL technique is leveraged in many recent program repair techniques [20, 29, 73]. In this work, we propose a new unified debugging approach to unify program repair and fault localization in the reversed way, and explore the following question, can program repair in turn help with fault localization? Our basic insight is that the patch execution information during program repair can provide useful feedbacks and guidelines for powerful fault localization. For example, if a patch passes some originally failing test(s), the patched location is very likely to be closely related to the real buggy location (e.g., sharing the same method or even same line), since otherwise the patch cannot mute the bug impacts to pass the failing test(s). Based on this insight, we designed ProFL (Program Repair for Fault Localization), a simplistic feedback-driven fault localization approach that leverages patch-execution information from state-of-the-art PraPR [20] repair tool for rearranging fault localization results computed by off-the-shelf fault localization techniques. Note that even state-of-the-art program repair techniques can only fix a small ratio of real bugs (i.e., <20% for Defects4J [20, 29, 73]) fully automatically and were simply absorbed for the vast majority of unfixed bugs, while our approach extends the application scope of program repair to all possible bugs – program repair techniques can also provide useful fault localization information to help with manual repair even for the bugs that are hard to fix automatically.

We have evaluated our ProFL on the Defects4J (V1.2.0) benchmark, which includes 395 real-world bugs from six open-source Java projects and has been widely used for evaluating both fault localization and program repair techniques [20, 29, 40, 67, 73]. Our experimental results show that ProFL can localize 161 bugs within Top-1, while state-of-the-art spectrum and mutation based fault localization techniques can at most localize 117 bugs within Top-1. We further investigate the impacts of various experimental configurations: (1) we investigate the finer-grained patch categorizations and observe that they do not have clear impact on ProFL; (2) we investigate the impact of different off-the-shelf SBFL formulae used in ProFL, and observe that ProFL consistently outperforms traditional SBFL regardless of the used formulae; (3) we replace the repair feedback information with traditional mutation feedback information in ProFL (since they both record the impacts of certain changes to test outcomes), and observe that ProFL still localizes 141 bugs within Top-1, significantly outperforming state-of-the-art SBFL and MBFL; (4) we feed ProFL with only partial patch-execution information (since the test execution will be aborted for a patch as soon as it gets falsified by some test for the sake of efficiency in practical program repair scenario), and observe that, surprisingly, ProFL using such partial information can reduce the execution overhead by 26.17X with no clear effectiveness drop; (5) we also apply ProFL on a newer version of Defects4J, Defects4J (V1.4.0) [22], and observe that ProFL performs consistently. In addition, we further observe that ProFL can even significantly boost state-of-the-art fault localization via both unsupervised [82, 83] and supervised [39] learning, localizing 185 and 216.80 bugs within Top-1, the best fault localization results via unsupervised/supervised learning to our knowledge.

This paper makes the following contributions:

- This paper opens a new unified debugging dimension for improving fault localization via off-the-shelf state-of-the-art program repair techniques, and also extends the application scope of program repair techniques to all possible bugs (not only the bugs that can be directly automatically fixed).
- The proposed approach, ProFL, has been implemented as a fully automated Maven plugin¹ for automated feedback-driven fault localization based on the patch executions of PraPR, a state-of-the-art program repair technique.
- We have performed an extensive study of the proposed approach on the widely used Defects4J benchmarks, and demonstrated the effectiveness, efficiency, robustness, and general applicability of the proposed approach.
- ProFL plugin has been deployed in an international IT company with over 1 billion global users. We also conducted a real-world industry case study within the company.

2 BACKGROUND AND RELATED WORK

Fault Localization [5, 9, 14, 23–25, 28, 30, 42, 51, 57, 62–64, 80, 81] aims to precisely diagnose potential buggy locations to facilitate manual bug fixing. The most widely studied spectrum-based fault localization (SBFL) techniques usually apply statistical analysis (e.g., Tarantula [30], Ochiai [5], and Ample [14]) or learning techniques [9, 62–64] to the execution traces of both passed and failed tests to identify the most suspicious code elements (e.g., statements/methods). The insight is that code elements primarily executed by failed tests are more suspicious than the elements primarily executed by passed tests. However, a code element executed by a failed test does not necessarily indicate that the element has impact on the test execution and has caused the test failure. To bridge the gap between coverage and impact information, researchers proposed mutation-based fault localization (MBFL) [51, 54, 55, 81], which injects changes to each code element (based on mutation testing [17, 26]) to check its impact on the test outcomes. MBFL has

¹https://github.com/yilinglou/proFL
been applied to both general bugs (pioneered by Metallaxis [54, 55]) and regression bugs (pioneered by FiFL [81]). ProFL shares similar insight with MBFL in that program changes can help determine the impact of code elements on test failures. However, ProFL utilizes program repair information that aims to fix software bugs to pass more tests rather than mutation testing that was originally proposed to create new artificial bugs to fail more tests; ProFL also embodies a new feedback-driven fault localization approach. Besides SBFL and MBFL, researchers have proposed to utilize various other information for fault localization (such as program slicing [80], predicate switching [84], code complexity [67], program invariant [7] information, and bug reports [37]), and have also utilized supervised learning to incorporate such different feature dimensions for fault localization [39, 40, 79]. However, the effectiveness of supervised-learning-based fault localization techniques may largely depend on the training sets, which may not always be available. In this work, we aim to explore a new direction for simplistic fault localization without supervised learning, i.e., leveraging patch-execution information (from program repair) for powerful fault localization. Automated Program Repair (APR) techniques [12, 15, 19, 21, 27, 44–46, 48–50, 53, 58, 71, 78] aim to directly fix software bugs with minimal human intervention via synthesizing genuine patches (i.e., the patches semantically equivalent to developer patches). Therefore, despite a young research area, APR has been extensively studied in the literature. Various techniques have been proposed to directly modify program code representations based on different rules/strategies, and then use tests as the oracle to validate each generated candidate patch to find plausible patches (i.e., the patches passing all tests/checks) [12, 15, 21, 45, 49, 53, 58, 78]. Note that not all plausible patches are genuine patches; thus existing APR techniques all rely on manual inspection to find the final genuine patches among all plausible ones. Search-based APR techniques assume that most bugs could be solved by searching through all the potential candidate patches based on certain patching rules (i.e., program-fixing templates) [16, 29, 38, 73]. Alternatively, semantics-based techniques use deeper semantical analyses (including symbolic execution [13, 33]) to synthesize program conditions, or even more complex code snippets, that can pass all the tests [49, 53, 78]. Recently, search-based APR has been extensively studied due to its scalability on real-world systems, e.g., the most recent PraPR technique has been reported to produce genuine patches for 43 real bugs from Defects4J [31]. Despite the success of recent advanced APR techniques, even the most recent program repair technique can only fix a small ratio (i.e., <20% for Defects4J) of real bugs [20, 29, 73] or specific types of bugs [47].

In this work, we aim to leverage program repair results to help with fault localization. More specifically, we design, ProFL, a simplistic feedback-driven fault localization approach guided by patch-execution results (from program repair). Note that Ghanbari et al. [20] and Timperley et al. [69] have considered that plausible patches may potentially help localize bugs. However, Ghanbari et al. did not present a systematic fault localization approach working for all possible bugs, while Timperley et al. showed that this direction is ineffective. In contrast, we present the first systematic fault localization approach driven by state-of-the-art program repair, perform the first extensive study under various settings and on a large number of real-world bugs, and show for the first time that state-of-the-art program repair can substantially boost state-of-the-art fault localization. Feedback-driven fault localization techniques have also been investigated before [41, 43]. However, existing feedback-driven fault localization techniques usually require manual inspection to guide debugging. In contrast, we present a fully automated feedback-driven fault localization, i.e., ProFL utilizes patch-execution results as feedback to enable powerful automated fault localization.

3 MOTIVATING EXAMPLES

In this section, we present two real-world bug examples to show the potential benefits of program repair for fault localization.

3.1 Example 1: Math-40

We use Math-40 from Defects4J (V1.2.0) [31], a widely used collection of real-world Java bugs, as our first example. Math-40 denotes the 40th buggy version of Apache Commons Math project [6] from
Defects4J (V1.2.0). The bug is located in a single method of the project (method doSolve of class BracketingNthOrderBrentSolver).

We attempted to improve the effectiveness of traditional SBFL based on Ochiai formula [5], which has been widely recognized as one of the most effective SBFL formulae [40, 57, 82]. Inspired by prior work [67], we used the aggregation strategy to aggregate the maximum suspiciousness values from statements to methods. Even with this improvement in place, Ochiai still cannot rank the buggy method in the top, and instead ranks the buggy method in the 4th place (with a suspiciousness value of 0.27). The reason is that traditional SBFL captures only coverage information and does not consider the actual impacts of code elements on test behaviors.

In an attempt to fix the bug, we further applied state-of-the-art APR technique, PraPR [20], on the bug. However, since fixing the bug requires multiple lines of asymmetric edits, the genuine patch is beyond the reach of PraPR and virtually other existing APR techniques as well. Analyzing the generated patches and their execution results, however, gives some insights on the positive effects that an APR technique might have on fault localization.

Among a large number of methods in Math-40, Table 1 lists the Top-5 most suspicious methods based on Ochiai. Each row corresponds to a method, with the highlighted one corresponding to the actual buggy method (i.e., doSolve). Column “EID” assigns an identifier for each method. Column “SBFL” reports SBFL suspiciousness values for each method, and “PID” assigns an identifier for each patch generated by PraPR that targets the method. Column “#F”/#P” reports the number of originally failing/passing tests that still fail/pass on each generated patch. The numbers within the parentheses in the table head are the number of failing/passing tests on the original buggy program. We also present the details of the developer patch for the bug and two patches generated by PraPR on the buggy method in Figure 1. From the table, we observe that P1 is a plausible patch, meaning that it passes all of the available tests but it might be not a genuine fix; P5 passes originally failing tests, while fails to pass 8 originally passing tests.

Several observations can be made at this point: First, whether the originally failing tests pass or not on a patch, can help distinguish the buggy methods from some correct methods. For example, for e1, e2 and e3, the originally failing test remains failing on all of their patches, while for the buggy method e4, the originally failing test becomes passing on both its patches. Second, whether the originally passing tests fail or not, can also help separate the buggy methods from some correct methods, e.g., P4 for the buggy method e4 does not fail any originally passing tests while the patch for the correct method e5 still fails some originally passing tests. Lastly, the detailed number of tests affected by the patches may not matter much. For example, for the correct method e5, its patch only fails one originally passing test, but for the buggy method e4, patch P5 makes even more (i.e., 8) originally passing tests fail.

<table>
<thead>
<tr>
<th>EID</th>
<th>Method Signature</th>
<th>SBFL</th>
<th>PID</th>
<th>#F (1)</th>
<th>#P (117)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>incrementEvaluationCount()</td>
<td>0.31</td>
<td>P1</td>
<td>1</td>
<td>3176</td>
</tr>
<tr>
<td>e2</td>
<td>BracketingNthOrderBrentSolver(Number)</td>
<td>0.31</td>
<td>P1</td>
<td>1</td>
<td>3172</td>
</tr>
<tr>
<td>e3</td>
<td>BracketingNthOrderBrentSolver(double, ...)</td>
<td>0.25</td>
<td>P1</td>
<td>1</td>
<td>3177</td>
</tr>
<tr>
<td>e4</td>
<td>doSolve()</td>
<td>0.27</td>
<td>P0</td>
<td>2</td>
<td>3177</td>
</tr>
<tr>
<td>e5</td>
<td>guessX(double[], ...)</td>
<td>0.20</td>
<td>P0</td>
<td>2</td>
<td>3175</td>
</tr>
</tbody>
</table>

3.2 Example 2: Closure-61

We further looked into Closure-61, another real-world buggy project from Defects4J (V1.2.0), but for which PraPR is even unable to generate any plausible patch. Similar with the first example, we present the Ochiai and PraPR results for the Top-5 methods in Table 2.

Based on Table 2, we observe that even the non-plausible noisy patch P16 is related to the buggy methods. The patches targeting method getSortedPropTypes and the two overloading methods of toString (which have higher suspiciousness values than that of the buggy method functionCallHasSideEffects) cannot generate any patch that can pass any of the originally failing tests. In addition, the fact that the number of passed tests which now fail in the patches of the buggy method are much larger than that for the correct method nodeTypeMayHaveSideEffects further confirms our observation above that, the detailed impacted test number does not matter much with the judgement of the correctness of a method.

Based on the above two examples, we have following implications to utilize the patch execution results to improve the original SBFL: (1) the patches (no matter plausible or not) positively impacting some failed test(s) may indicate the actual buggy locations and should be favored; (2) the patches negatively impacting some passed test(s) may help exclude some correct code locations and should be unfavored; (3) the detailed number of the impacted tests does not matter much for fault localization. Therefore, we categorize all the patches into four different basic groups based on whether they impact originally passed/failed tests to help with fault localization, details shown in Section 4.

4 APPROACH

4.1 Preliminaries

In order to help the readers better understand the terms used throughout this paper, in what follows, we attempt to define a number of key notions more precisely.

Definition 4.1 (Candidate Patch). Given the original program P0, a candidate patch P can be created by modifying one or more program elements within P0. The set of all candidate patches generated for the program is denoted by P.

In this paper, we focus on APR that conducts only first-order program transformations, which only change one program element in each patch, such as PraPR [20]. Note that our approach is general and can also be applied to other APR techniques in theory, even including the ones applying high-order program transformations.

Definition 4.2 (Patch Execution Matrix). Given a program P0, its test suite T, and its corresponding set of all candidate patches P, the patch execution matrix, M, is defined as the execution results of all patches in P on all tests in T. Each matrix cell result, M[P, t], represents the execution results of test t ∈ T on patch P ∈ P, and
The overview of ProFL is shown in Figure 3. According to the figure, ProFL consists of four different layers. The input for ProFL is the actual buggy program under test and the original failing test suite, and the final output is a refined ranking of the program elements based on the initial suspiciousness calculation. In the first layer, ProFL conducts naive SBFL formulae (e.g., Ochiai [5]) at the statement level, and then performs suspiciousness aggregation [67] to calculate the initial suspiciousness value for each program element. Note that besides such default initial suspiciousness computation, ProFL is generic and can leverage the suspiciousness values computed by any other advanced fault localization technique in this layer (such as the PageRank-based fault localization [82]). In the second layer, ProFL collects the patch execution matrix along the program repair process for the program under test, and categorizes each patch into different groups based on Section 4.1. In the third layer, for each element, ProFL maps the group information of its corresponding patches to itself via group aggregation. In the last layer, ProFL finally reanks all the program elements via considering their suspiciousness and group information in tandem.

We next explain each layer in detail with our first motivation example. Since the number of tests and patches are really huge, due to space limitation, we only include the tests and patches that are essential for the ranking results of the elements. After reduction, we consider the six patches (P_1 to P_6) and the 9 tests whose statuses changed on these patches (denoted as t_1 to t_9). Based on Definition 4.2, we present M in Figure 3. The first row stands for $M[P_0, T]$, the execution results of T on the original buggy program P_0, and from the second row, each row represents $M[P, T]$, the execution results of each patch P as shown in Table 1 on T.

4.2 Basic ProFL

The overview of ProFL is shown in Figure 3. According to the figure, ProFL consists of four different layers. The input for ProFL is the actual buggy program under test and the original failing test suite, and the final output is a refined ranking of the program elements based on the initial suspiciousness calculation. In the first layer, ProFL conducts naive SBFL formulae (e.g., Ochiai [5]) at the statement level, and then performs suspiciousness aggregation [67] to calculate the initial suspiciousness value for each program element. Note that besides such default initial suspiciousness computation, ProFL is generic and can leverage the suspiciousness values computed by any other advanced fault localization technique in this layer (such as the PageRank-based fault localization [82]). In the second layer, ProFL collects the patch execution matrix along the program repair process for the program under test, and categorizes each patch into different groups based on Section 4.1. In the third layer, for each element, ProFL maps the group information of its corresponding patches to itself via group aggregation. In the last layer, ProFL finally reanks all the program elements via considering their suspiciousness and group information in tandem.

We next explain each layer in detail with our first motivation example. Since the number of tests and patches are really huge, due to space limitation, we only include the tests and patches that are essential for the ranking results of the elements. After reduction, we consider the six patches (P_1 to P_6) and the 9 tests whose statuses changed on these patches (denoted as t_1 to t_9). Based on Definition 4.2, we present M in Figure 3. The first row stands for $M[P_0, T]$, the execution results of T on the original buggy program P_0, and from the second row, each row represents $M[P, T]$, the execution results of each patch P as shown in Table 1 on T.

4.2.1 Layer 1: Suspicious Computation

Given the original program statements, $S = \{e_1, e_2, ..., e_9\}$, we directly apply an off-the-shelf spectrum-based fault localization technique (e.g., the default Ochiai [5]) to compute the suspiciousness for each statement, e.g., $S[e_j]$ for statement e_j. Then, the proposed approach applies suspiciousness aggregation [67] to compute the element suspiciousness values at the desired level (e.g., method level in this work) since prior work has shown that suspicious aggregation can significantly improve fault localization results [11, 67]. Given the initial list of $E = \{e_1, e_2, ..., e_9\}$, for each e_i in E, suspiciousness aggregation computes its suspiciousness as $S[e_i] = \max_{j} S[e_j]$, i.e., the highest suspiciousness value for all statements within a program element is computed as the suspiciousness value for the element.

For our first motivation example, after suspicious aggregation, for the five elements, $S[e_1, e_2, e_3, e_4, e_5] = [0.57, 0.33, 0.28, 0.27, 0.20]$.

4.2.2 Layer 2: Patch Categorization

In this layer, ProFL automatically invokes off-the-shelf program repair engines (ProPR [20] for this work) to try various patching opportunities and record the detailed patch-execution matrix, M. Then, based on the resulting M, ProFL automatically categorizes each patch into different groups. Given program element e and all the patches generated for the program, P, the patches occurring on e can be denoted as $P[e]$. Then, based on Definitions 4.3 to 4.6, each patch within $P[e]$ for each element e can be categorized into one of the four following groups: CleanFix, NoisyFix, NoneFix, NegFix.

Recall that $C[P]$ represents the group information for P, e.g., $C[P] = \{\text{CleanFix}, \text{NoisyFix}, \text{NoneFix}, \text{NegFix}\}$.

4.2.3 Layer 3: Group Aggregation

For each program element e, we utilize its corresponding patch group information to determine its own group information. Recall that the ranking of different patch groups is: CleanFix \geq NoisyFix \geq NoneFix \geq NegFix. Then, the group information for a program element can be determined by the best group information of all patches occurring on the program.
element. Therefore, we present the following rules for determining the group information for each e:

$$G[e] = \begin{cases} \text{CleanFix} & \text{if } \exists \mathcal{P}, \mathcal{P} \in \mathcal{P}[e] \land G[\mathcal{P}] = \text{CleanFix} \\ \text{NoisyFix} & \text{else if } \exists \mathcal{P}, \mathcal{P} \in \mathcal{P}[e] \land G[\mathcal{P}] = \text{NoisyFix} \\ \text{NoneFix} & \text{else if } \exists \mathcal{P}, \mathcal{P} \in \mathcal{P}[e] \land G[\mathcal{P}] = \text{NoneFix} \\ \text{NegFix} & \text{else} \end{cases}$$

(1)

Shown in Equation 1, element e is within Group CleanFix whenever there is any patch \mathcal{P} within e such that \mathcal{P} is a clean-fix patch; otherwise, it is within Group NoisyFix whenever there is any patch \mathcal{P} within e such that \mathcal{P} is a noisy-fix patch.

After group aggregation, the group of each program element (i.e., method) in the motivation example is $G[e]$. Assume we will be used to rank the program elements. We use $\mathbb{R}[e_1, e_2]$ to denote the total-order ranking between any two program elements, it can be formally defined as:

$$\mathbb{R}[e_1, e_2] = \begin{cases} e_1 \geq e_2 & \text{if } G[e_1] > G[e_2] \lor G[e_1] = G[e_2] \land S[e_1] \geq S[e_2] \\ e_2 \geq e_1 & \text{if } G[e_2] > G[e_1] \lor G[e_1] = G[e_2] \land S[e_1] \geq S[e_2] \end{cases}$$

(2)

That is, e_1 is ranked higher or equivalent to e_2 only when (i) e_1 is within a higher-ranked group, or (ii) e_1 is within the same group as e_2 but has a higher or equivalent suspicious value compared to e_2. Therefore, the final ranking of our example is: $e_4 \geq e_3 \geq e_5 \geq e_1 \geq e_2$, ranking the buggy method e_4 at the first place.

4.3 Variants of ProFL

Taking the approach above as the basic version of ProFL, there can be many variants of ProFL, which are discussed as follows.

Finer-grained Patch Categorization. Previous work [20] found that plausible patches are often coupled tightly with buggy elements, which actually is a subset of CleanFix defined in our work. Inspired by this finding, we further extend ProFL with finer-grained patch categorization rules, which respectively divide CleanFix and NoisyFix into two finer categories according to the criterion whether all failed tests are impacted. We use Figure 4 to show the relation between the four finer-grained patch categories and the four basic categories. Considering the finer categories, we further extend the group aggregation strategies in the third layer of ProFL accordingly as shown in Table 3 to study the impact of further splitting CleanFix and NoisyFix categories. For example, R_1 (ranking CleanPartFix below CleanAllFix) and R_2 (ranking CleanAllFix below CleanPartFix) study the two different ways for splitting CleanFix.

SBFL Formulae. The elements are reranked in the last layer based on their aggregated suspiciousness values and groups. In theory, ProFL is not specific for any particular way to calculate the aggregated suspiciousness value. Therefore, besides our default Ochiai [5] formula, all the other formulae in SBFL can be adopted in ProFL. We study all the 34 SBFL formulae considered in prior work [40, 67]. The impact of these formulae on ProFL would be studied later.

Feedback Sources

Generally speaking, not only the patch execution results can be the feedback of our approach, any other execution results correlated with program modifications can serve as the feedback sources, e.g., mutation testing [26]. For example, a mutant and a patch are both modifications on the program, thus ProFL can directly be applied with the mutation information as feedback. However, mutation testing often includes simple syntax modifications that were originally proposed to simulate software bugs to fail more tests, while program repair often includes more (advanced) modifications that aim to pass more tests to fix software bugs. Therefore, although it is feasible to use mutation information as the feedback source of our approach, the effectiveness remains unknown, which would be studied.

Partial Execution Matrix. During program repair, usually the execution for a patch would terminate as soon as one test fails, which is the common practice to save the time cost. In this scenario, only partial execution results are accessible. In the previous sections, \mathbb{M} is considered as complete (as traditional MBFL also requires full mutant execution matrices), which we denote as full matrix, \mathbb{M}_f, while in this section, we discuss the case where \mathbb{M} is considered as incomplete in APR practice, which we call a partial matrix, \mathbb{M}_p. Recall Definition 4.2, different from \mathbb{M}_f, cells in \mathbb{M}_p can be \mathcal{O} besides \mathcal{X}, e.g., when t is not executed on \mathcal{P}, $\mathbb{M}_p[\mathcal{P}, t] = \mathcal{O}$.

In the motivation example, during the patch execution, if T is executed in the order from t_1 to t_9, and one failed test would stop execution for each patch immediately, \mathbb{M}_p is as follows.

$$\mathbb{M}_p = \begin{bmatrix} t_1 & t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & t_8 & t_9 \\ \mathcal{P}_0 & \times \\ \mathcal{P}_1 & \times & \circ \\ \mathcal{P}_2 & \times & \circ \\ \mathcal{P}_3 & \times & \circ \\ \mathcal{P}_4 & \times \\ \mathcal{P}_5 & \times & \times & \circ & \circ & \circ & \circ & \circ & \circ \\ \mathcal{P}_6 & \times \end{bmatrix}$$

(3)

In the scenario where only partial matrix is accessible, we can find there are many unknown results. Interestingly, in this example, we find the final ranking does not change at all even with a partial...
We conduct our study on all bugs from the Defects4J benchmark which has been widely used in prior fault-localization work. Recently, an extended version, Defects4J (V1.4.0), which includes more real-world bugs, has been released. Therefore, we further perform the first fault localization study on Defects4J (V1.4.0) to reduce the threats to external validity.

In Table 4, Column “ID” presents the subject IDs. Columns “Name” and “#Bug” present the full name and the number of bugs for each project. Columns “Loc” and “#Test” list the line-of-code information and the number of tests for the HEAD version of each project. Note that the two projects highlighted in gray are excluded due to build/test framework incompatibility with PraPR. In total, our study is performed on all 395 bugs from Defects4J (V1.2.0) and 192 additional bugs from Defects4J (V1.4.0).

5.3 Independent Variables

Evaluated Techniques: We compare ProFL with the following state-of-the-art SBFL and MBFL techniques: (a) Spectrum-based (SBFL): we consider traditional SBFL with suspiciousness aggregation strategy to aggregate suspiciousness values from statements to methods, which has been shown to be more effective than naive SBFL in previous work [11, 67]. (b) Mutation-based (MBFL): we consider two representative MBFL techniques, MUSE [51] and Metallaxis [55]. (c) Hybrid of SBFL and MBFL (MCBFL): we also consider the recent MCBFL [57], which represents state-of-the-art hybrid spectrum- and mutation-based fault localization. Furthermore, we include state-of-the-art learning-based fault localization techniques: (a) Unsupervised: we consider state-of-the-art PRFL [82] and PRFL-MA [83] (which further improves PRFL via suspiciousness aggregation) that aim to boost SBFL with the unsupervised PageRank algorithm. (b) Supervised: we consider state-of-the-art supervised-learning-based fault localization, DeepFL [39], which outperforms all other learning-based fault localization [46, 67, 79]. Note that, SBFL and Metallaxis can adopt different SBFL formulae, and we by default uniformly use Ochiai [5] since it has been demonstrated to perform the best for both SBFL and MBFL [40, 57, 82].

Experimental Configurations: We explore the following configurations to study ProFL: (a) Finer ProFL Categorization: in RQ2a, we study the four extended categorization aggregation rules based on the finer patch categories as listed in Table 3. (b) Studied SBFL Formulae: in RQ2b, we implement all the 34 SBFL formulae considered in prior work [40, 67] to study the impact of initial formulae. (c) Feedback Sources: besides the patch execution results of program repair, mutation testing results can also be used as the feedback sources of ProFL. Thus, we study the impact of these two feedback sources in RQ2c. (d) Partial Execution Matrix: we collect partial execution matrices in three common test-execution orderings: (i) O1: the default order in original test suite; (ii) O2: running originally-failed tests first and then originally-passing tests, which is also the common practice in program repair to save the time cost; (iii) O3: running originally-failing tests first and then originally-failed tests. The partial matrices collected by these orders are denoted as P_{O1}, P_{O2}, and P_{O3} respectively. We investigate the impacts of different partial execution matrices used in RQ2d.

Used Benchmarks: we evaluate ProFL in two benchmarks, Defects4J (V1.2.0) and Defects4J (V1.4.0) in RQ2e.
5.4 Dependent Variables and Metrics

In this work, we perform fault localization at the method level following recent fault localization work [7, 39, 40, 67, 82], because the class level has been shown to be too coarse-grained while the statement level is too fine-grained to keep useful context information [35, 56]. We use the following widely used metrics [39, 40]:

Recall at Top-N: Top-N computes the number of bugs with at least one buggy element localized in the Top-N positions of the ranked list. As suggested by prior work [56], usually, programmers only inspect a few buggy elements in the top of the given ranked list, e.g., 73.58% developers only inspect Top-5 elements [35]. Therefore, following prior work [39, 40, 82, 85], we use Top-N (N=1, 3, 5).

Mean First Rank (MFR): For each subject, MFR computes the mean of the first relevant buggy element’s rank for all its bugs, because the localization of the first buggy element for each bug can be quite crucial for localizing all buggy elements.

Mean Average Rank (MAR): We first compute the average rank of all the buggy elements for each bug. Then, MAR of each subject is the mean of such average ranking of all its bugs. MAR emphasizes the precise ranking of all buggy elements, especially for the bugs with multiple buggy elements.

Fault localization techniques sometimes assign same suspiciousness score to code elements. Following prior work [39, 40], we use the worst ranking for the tied elements. For example, if a buggy element is tied with a correct element in the kth position of the ranked list, the rank for both elements would be k + 1th.

5.5 Implementation and Tool Supports

For APR, we use PraPR [20], a recent APR technique that fixes bugs at the bytecode level. We choose PraPR because it is one of the most recent APR techniques and has been demonstrated to be able to fix more bugs with a much lower overhead compared to other state-of-the-art techniques. PraPR is set to generate patches for all potentially buggy locations so that the mismatched elements can be adjusted by ProFL. Note that, ProFL does not rely on any specific APR technique, since its feedback input (i.e., patch executions) is general and can come from any other APR technique in principle.

We now discuss the collection of all the other information for implementing ProFL and other compared techniques: (i) To collect the coverage information required by SBFL techniques, we use the ASM bytecode manipulation framework [10] to instrument the code on-the-fly via JavaAgent [2]. (ii) To collect the mutation testing information required by MBFL, we use state-of-the-art PIT mutation testing framework [3] (Version 1.3.2) with all its available mutators, following prior MBFL work [39, 40]. Note that we also modify PIT to force it to execute all tests for each mutant and collect detailed mutant impact information (i.e., whether each mutant can impact the detailed test failure message of each test [57]) required by Metallaxis. For PRL, PRLMA, and DeepFL, we directly used the implementation released by the authors [39, 83]. All experiments are conducted on a Dell workstation with Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, 330GB RAM, and Ubuntu 18.04.1 LTS.

5.6 Threats to Validity

Threats to internal validity mainly lie in the correctness of implementation of our approach and the compared techniques. To reduce this threat, we manually reviewed our code and verified that the results of the overlapping fault localization techniques between this work and prior work [40, 82, 83] are consistent. We also directly used the original implementations from prior work [39, 83].

Threats to construct validity mainly lie in the rationality of assessment metrics that we chose. To reduce this threat, we chose the metrics that have been recommended by prior studies/surveys [35, 56] and widely used in previous work [39, 40, 67, 82].

Threats to external validity mainly lie in the benchmark suites used in our experiments. To reduce this threat, we chose the widely used Defects4J (V1.2.0) benchmark, which includes hundreds of real bugs collected during real-world software development. To further reduce the threats, compared to previous work, we also conducted the first fault localization evaluation on an extended version of Defects4J, Defects4J (V1.4.0).

6 RESULTS

6.1 RQ1: Effectiveness of ProFL

To answer this RQ, we first present the overall fault localization results of ProFL and state-of-the-art SBFL and MBFL techniques on Defects4J (V1.2.0) in Table 5. Column “Tech Name” represents the corresponding techniques and the other columns present the results in terms of Top-1, Top-3, Top-5, MFR and MAR. From the table, we observe that ProFL significantly outperforms all the existing techniques in terms of all the five metrics. For example, the Top-1 value of ProFL is 161, 30 more than MCBFL, 44 more than aggregation-based SBFL, 77 more than Metallaxis, and 72 more than MUSE. In addition, MAR and MFR values are also significantly improved (e.g., 47.30% improvement in MFR compared with state-of-the-art MCBFL), indicating a consistent improvement for all buggy elements in the ranked lists. Note that our overall bug ranking results are consistent with prior fault localization work at the method level [40], e.g., state-of-the-art MBFL can outperform SBFL, demonstrating the effectiveness of MBFL. Meanwhile, we observe that SBFL outperforms state-of-the-art MBFL techniques in terms of Top-ranked bugs, which is not consistent with prior work [40]. We find the main reason to be that the prior work did not use suspicious aggregation (which was proposed in parallel with the prior work) for SBFL, demonstrating the effectiveness of suspiciousness aggregation for SBFL.

To further investigate why the simple ProFL approach works, we further analyze each of the four basic ProFL patch categories in a post-hoc way. For each patch category group Gt, for each bug in the benchmark, we use metric RatioG to represent the ratio of the number of buggy elements (i.e., methods in this work) categorized into group Gt to the number of all elements categorized into group Gt. Only the results of Apr, DeepP, and DeepF are presented in Table 5 due to space constraints, and the results show that ProFL successfully identifies the suspiciousness aggregation for SBFL.

| Table 5: Overall fault localization results |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tech Name | Top-1 | Top-3 | Top-5 | MFR | MAR |
| SBFL | 117 | 219 | 259 | 19.15 | 24.63 |
| MUSE | 89 | 152 | 182 | 47.51 | 52.81 |
| Metallaxis | 84 | 175 | 223 | 17.10 | 19.54 |
| MCBFL | 131 | 227 | 267 | 17.99 | 23.26 |
| ProFL | 161 | 255 | 286 | 9.48 | 14.37 |

For APR, we use PraPR [20], a recent APR technique that fixes bugs at the bytecode level. We choose PraPR because it is one of the most recent APR techniques and has been demonstrated to be able to fix more bugs with a much lower overhead compared to other state-of-the-art techniques. PraPR is set to generate patches for all potentially buggy locations so that the mismatched elements can be adjusted by ProFL. Note that, ProFL does not rely on any specific APR technique, since its feedback input (i.e., patch executions) is general and can come from any other APR technique in principle.

We now discuss the collection of all the other information for implementing ProFL and other compared techniques: (i) To collect the coverage information required by SBFL techniques, we use the ASM bytecode manipulation framework [10] to instrument the code on-the-fly via JavaAgent [2]. (ii) To collect the mutation testing information required by MBFL, we use state-of-the-art PIT mutation testing framework [3] (Version 1.3.2) with all its available mutators, following prior MBFL work [39, 40]. Note that we also modify PIT to force it to execute all tests for each mutant and collect detailed mutant impact information (i.e., whether each mutant can impact the detailed test failure message of each test [57]) required by Metallaxis. For PRL, PRLMA, and DeepFL, we directly used the implementation released by the authors [39, 83]. All experiments are conducted on a Dell workstation with Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, 330GB RAM, and Ubuntu 18.04.1 LTS.

5.6 Threats to Validity

Threats to internal validity mainly lie in the correctness of implementation of our approach and the compared techniques. To reduce this threat, we manually reviewed our code and verified that the results of the overlapping fault localization techniques between this work and prior work [40, 82, 83] are consistent. We also directly used the original implementations from prior work [39, 83].

Threats to construct validity mainly lie in the rationality of assessment metrics that we chose. To reduce this threat, we chose the metrics that have been recommended by prior studies/surveys [35, 56] and widely used in previous work [39, 40, 67, 82].

Threats to external validity mainly lie in the benchmark suites used in our experiments. To reduce this threat, we chose the widely used Defects4J (V1.2.0) benchmark, which includes hundreds of real bugs collected during real-world software development. To further reduce the threats, compared to previous work, we also conducted the first fault localization evaluation on an extended version of Defects4J, Defects4J (V1.4.0).

6 RESULTS

6.1 RQ1: Effectiveness of ProFL

To answer this RQ, we first present the overall fault localization results of ProFL and state-of-the-art SBFL and MBFL techniques on Defects4J (V1.2.0) in Table 5. Column “Tech Name” represents the corresponding techniques and the other columns present the results in terms of Top-1, Top-3, Top-5, MFR and MAR. From the table, we observe that ProFL significantly outperforms all the existing techniques in terms of all the five metrics. For example, the Top-1 value of ProFL is 161, 30 more than MCBFL, 44 more than aggregation-based SBFL, 77 more than Metallaxis, and 72 more than MUSE. In addition, MAR and MFR values are also significantly improved (e.g., 47.30% improvement in MFR compared with state-of-the-art MCBFL), indicating a consistent improvement for all buggy elements in the ranked lists. Note that our overall bug ranking results are consistent with prior fault localization work at the method level [40], e.g., state-of-the-art MBFL can outperform SBFL, demonstrating the effectiveness of MBFL. Meanwhile, we observe that SBFL outperforms state-of-the-art MBFL techniques in terms of Top-ranked bugs, which is not consistent with prior work [40]. We find the main reason to be that the prior work did not use suspicious aggregation (which was proposed in parallel with the prior work) for SBFL, demonstrating the effectiveness of suspiciousness aggregation for SBFL.

To further investigate why the simple ProFL approach works, we further analyze each of the four basic ProFL patch categories in a post-hoc way. For each patch category group Gt, for each bug in the benchmark, we use metric RatioG to represent the ratio of the number of buggy elements (i.e., methods in this work) categorized into group Gt to the number of all elements categorized into group Gt. Only the results of Apr, DeepP, and DeepF are presented in Table 5 due to space constraints, and the results show that ProFL successfully identifies the suspiciousness aggregation for SBFL.
we implemented different ProFL variants based on each rule in Table 3. The experimental results for all the variants are shown in Table 6. In the table, Column “Tech” presents each of the compared variants and the remaining columns present the corresponding metric values computed for each variant. Note that the four variants of ProFL implemented with different rules shown in Table 3 are denoted as ProFL$_R_1$, ProFL$_R_2$, ProFL$_R_3$, and ProFL$_R_4$, respectively.

From the table, we observe that ProFL variants with different extended rules perform similarly with the default setting in all the used metrics. To confirm our observation, we further perform the Wilcoxon signed-rank test [75] (at the significance level of 0.05) to compare each variant against the default setting in terms of both the first and average buggy-method ranking for each bug. The test results are presented in the parentheses in the MFR and MAR columns, and show that there is no significant difference (p=0.05) among the compared variants, indicating that considering the finer-grained grouping does not help much in practice. To explain this observation, we analyze the methods in CleanAllFix, CleanPartFix and find that they have same method sets for over 90% cases, indicating that fixing a subset of failing tests without breaking any passing tests is already challenging.

6.2.2 RQ2b: Impact of SBFL Formulae. Our ProFL approach is general and can be applied to any SBFL formula, therefore, in this RQ, we further study the impact of different SBFL formulae on ProFL effectiveness. The experimental results are shown in Figure 6. In this figure, the x axis presents all the 34 SBFL formulae considered in this work, the y axis presents the actual metric values in terms of Top-1 and MAR, while the light and dark lines represent the original SBFL techniques and our ProFL version respectively. We can observe that, for all the studied SBFL formulae, ProFL can consistently improve their effectiveness. For example, the Top-1 improvements range from 41 (for ER1a) to 87 (for GP13), while the MAR improvements range from 36.54% (for Wong) to 77.41% (for GP02). Other metrics follow similar trend, e.g., the improvements in MFR are even larger than MAR, ranging from 49.24% (for SBI) to 80.47% (for GP02). Furthermore, besides the consistent improvement, we also observe that the overall performance of ProFL is quite stable for different SBFL formulae. For example, the MAR value for SBFL has huge variations when using different formulae, while ProFL has stable performance regardless of the formula used, indicating that ProFL can boost ineffective SBFL formulae even more.

6.2.3 RQ2c: Impact of Feedback Source. Since ProFL is general and can even take traditional mutation testing information as feedback
source, we implement a new ProFL variant that directly take mutation information (computed by PIT) as feedback. To distinguish the two ProFL variants, we denote the new variant as ProFL_PIT and the default one as ProFL_PraPR. Meanwhile, all the existing MBFL techniques can also take the APR results from PraPR as input (PraPR can be treated as an augmented mutation testing tool with more and advanced mutators), thus we also implemented such variants for traditional MBFL for fair comparison, e.g., the original MUSE is denoted as MUSE_PIT while the new MUSE variant is denoted as MUSE_PraPR. Table 7 presents the experimental results for both ProFL and prior mutation-based techniques using different information sources. We have the following observations:

First, ProFL is still the most effective technique compared with other techniques even with the feedback information from mutation testing. For example, ProFL with mutation information localizes 141 bugs within Top-1, while the most effective existing technique (no matter using mutation or repair information) only localizes 131 bugs within Top-1. This observation implies that the ProFL approach of using feedback information (from program-variant execution) to refine SBFL ranking is general in design, and is not coupled tightly with specific source(s) of feedback.

Second, ProFL performs worse when feedback source changes from program repair to mutation testing. For example, the Top-1 decreases from 161 to 141. The reason is that patches within groups CleanFix/NoisyFix can help promote the ranking of buggy methods. However, mutation testing cannot create many such patches. For example, we find that the number of bugs with CleanFix/NoisyFix patches increases by 39.84% when changing from mutation testing to APR. This further indicates that APR is more suitable than mutation testing for fault localization since it aims to pass more tests while mutation testing was originally proposed to fail more tests.

Third, for the two existing MBFL techniques, MUSE performs better in program repair compared to mutation testing while Metallaxis is the opposite. We find the reason to be that MUSE simply counts the number of tests changed from passed to failed and vice versa, while Metallaxis leverages the detailed test failure messages to determine mutant impacts. In this way, APR techniques that make more failed tests pass can clearly enhance the results of MUSE, but do not have clear benefits for Metallaxis.

Finding 4: ProFL still performs well even with the mutation feedback information, but has effectiveness decrements compared to using program repair, indicating the superiority of program repair over mutation testing for fault localization.

Table 7: Impacts of using mutation or repair information

<table>
<thead>
<tr>
<th>Tech Name</th>
<th>Top-1</th>
<th>Top-3</th>
<th>Top-5</th>
<th>MFR</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSE_PIT</td>
<td>89</td>
<td>152</td>
<td>182</td>
<td>47.51</td>
<td>52.81</td>
</tr>
<tr>
<td>MUSE_PraPR</td>
<td>95</td>
<td>172</td>
<td>207</td>
<td>38.79</td>
<td>43.10</td>
</tr>
<tr>
<td>Metallaxis_PIT</td>
<td>84</td>
<td>175</td>
<td>223</td>
<td>17.10</td>
<td>19.54</td>
</tr>
<tr>
<td>Metallaxis_PraPR</td>
<td>77</td>
<td>170</td>
<td>211</td>
<td>21.42</td>
<td>22.94</td>
</tr>
<tr>
<td>MCBFL_PIT</td>
<td>131</td>
<td>227</td>
<td>267</td>
<td>17.99</td>
<td>23.26</td>
</tr>
<tr>
<td>MCBFL_PraPR</td>
<td>130</td>
<td>228</td>
<td>267</td>
<td>18.03</td>
<td>23.28</td>
</tr>
<tr>
<td>ProFL_PIT</td>
<td>141</td>
<td>238</td>
<td>266</td>
<td>15.24</td>
<td>20.33</td>
</tr>
<tr>
<td>ProFL_PraPR</td>
<td>161</td>
<td>255</td>
<td>286</td>
<td>9.48</td>
<td>14.37</td>
</tr>
</tbody>
</table>

Table 8: Impacts of using partial matrices

<table>
<thead>
<tr>
<th>M_p</th>
<th>Tech Name</th>
<th>Top-1</th>
<th>Top-3</th>
<th>Top-5</th>
<th>MFR</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_p^{(O)}$</td>
<td>MUSE_PraPR</td>
<td>92</td>
<td>148</td>
<td>172</td>
<td>118.56</td>
<td>125.11</td>
</tr>
<tr>
<td>$M_p^{(O)}$</td>
<td>Metallaxis_PraPR</td>
<td>64</td>
<td>128</td>
<td>167</td>
<td>113.9</td>
<td>126.79</td>
</tr>
<tr>
<td>$M_p^{(O)}$</td>
<td>ProFL</td>
<td>165</td>
<td>260</td>
<td>288</td>
<td>18.18</td>
<td>23.47</td>
</tr>
<tr>
<td>$M_p^{(O)}$</td>
<td>MUSE_PraPR</td>
<td>87</td>
<td>130</td>
<td>152</td>
<td>191.71</td>
<td>206.0</td>
</tr>
<tr>
<td>$M_p^{(O)}$</td>
<td>Metallaxis_PraPR</td>
<td>32</td>
<td>73</td>
<td>94</td>
<td>163.29</td>
<td>170.61</td>
</tr>
<tr>
<td>$M_p^{(O)}$</td>
<td>ProFL</td>
<td>157</td>
<td>242</td>
<td>281</td>
<td>9.61</td>
<td>14.20</td>
</tr>
</tbody>
</table>

6.2.4 RQ2d: Impact of Partial Execution Matrix

First, surprisingly, ProFL with different partial matrices still perform similarly with our default ProFL using full matrices, while the traditional MBFL techniques perform significantly worse using partial matrices. For example, the MFR and MAR values for existing MBFL all become over 160 when using partial matrices collected following common APR practice (i.e., $M_p^{(O)}$), while the MFR and MAR values for ProFL have negligible change when using the same partial matrices. We think the reason to be that existing MBFL techniques utilize the detailed number of impacted tests for fault localization and may be too sensitive when switching to partial matrices.

Second, ProFL shows consistent effectiveness with partial matrices obtained from different test execution orderings, e.g., even the worst ordering still produces 155 Top-1 bugs. One potential reason that $M_p^{(O)}$ performs the worst is that if there is any passed tests changed into failing, the original failed tests will no longer be executed, missing the potential opportunities to have CleanFix/NoisyFix patches that can greatly boost fault localization. Luckily, in practice, repair tools always execute the failed tests first (i.e., $M_p^{(O)}$), further demonstrating that ProFL is practical.

Note that the cost of ProFL consists of two parts: (1) APR time (full/partial matrix collection time), and (2) final fault-localization time based on the APR results. As for the latter cost, ProFL costs less than 2min to compute the suspicousness scores for each Defects4J (V1.2.0) bug on average (including the APR result parsing time), which is negligible compared to the APR time. Therefore, we next present the cost reduction benefits that partial execution matrices can bring to speed up the APR time. The experimental results for the HEAD version (i.e., the latest and usually the largest version) of each studied subject are shown in Table 9. In the table, Column "Time_f_p" presents the time for executing all tests on each candidate patch while Column "Time_f_p" presents the time for terminating test execution on a patch as soon as the patch gets falsified (following the default test execution order of PraPR, i.e., $M_p^{(O)}$, which executes originally failed tests first then passed tests). Similarly, Column "Execution_f_p/"Execution_p" shows the number...
We further apply the basic ProFL to boost state-of-the-art unsupervised-findings (since they are all dynamic features), and denote that as the original mutation and spectrum feature dimensions (since they are all dynamic features), and denote that as ProFL\textsubscript{DeepFL}. The experimental results are shown in Table 11. Note that DeepFL results are averaged over 10 runs due to the DNN randomness [39]. First, even the basic ProFL significantly outperforms state-of-the-art unsupervised-learning-based fault localization. E.g., ProFL localizes 161 bugs within Top-1, while the most effective unsupervised PRFL\textsubscript{MA} only localizes 136 bugs within Top-1. Second, ProFL can significantly boost unsupervised-learning-based fault localization. E.g., ProFL\textsubscript{PRFL\textsubscript{MA}} localizes 185 bugs within Top-1, the best fault localization results on Defects4J without supervised learning to our knowledge. Actually, such unsupervised-learning-based fault localization results even significantly outperform many state-of-the-art supervised-learning-based techniques, e.g., TraPT [40], FLUCCS [67], and CombineFL [85] only localize 156, 160, and 168 bugs from the same dataset within Top-1, respectively [39, 85]. Lastly, we can observe that ProFL even boosts state-of-the-art supervised-learning-based technique. E.g., it boosts DeepFL to localize 216.80 bugs within Top-1, the best fault localization results on Defects4J with supervised learning to our knowledge. The Wilcoxon signed-rank test [75] with Bonferroni corrections [18] for bug ranking also shows that ProFL significantly boosts all the studied learning-based techniques at 0.05 significance level.

Finding 5: ProFL keeps its high effectiveness even on partial patch execution matrices, especially with test execution ordering following the program repair practice, demonstrating that its runtime overhead can be reduced by 26.17X without clear effectiveness drop.

Finding 6: ProFL still significantly outperforms state-of-the-art SBFL and MBFL on additional bugs.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Time\textsubscript{f}</th>
<th>Time\textsubscript{p}</th>
<th>Speedup</th>
<th>Execution\textsubscript{f}</th>
<th>Execution\textsubscript{p}</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lang-1</td>
<td>0m38s</td>
<td>0m31s</td>
<td>1.23X</td>
<td>2,282</td>
<td>157</td>
<td>14.4X</td>
</tr>
<tr>
<td>Closure-1</td>
<td>2.58h26s</td>
<td>101m32s</td>
<td>23.25X</td>
<td>186,451,071</td>
<td>253,378</td>
<td>753.86X</td>
</tr>
<tr>
<td>Mockito-1</td>
<td>41.2m30s</td>
<td>2m43s</td>
<td>16.58X</td>
<td>4,429,249</td>
<td>8,318</td>
<td>322.49X</td>
</tr>
<tr>
<td>Chart-1</td>
<td>32m27s</td>
<td>2m41s</td>
<td>12.90X</td>
<td>796,654</td>
<td>3,769</td>
<td>211.37X</td>
</tr>
<tr>
<td>Time-1</td>
<td>149m14s</td>
<td>0m41s</td>
<td>218.39X</td>
<td>677,094</td>
<td>1,147</td>
<td>590.32X</td>
</tr>
<tr>
<td>Math-1</td>
<td>66m24s</td>
<td>7m53s</td>
<td>8.63X</td>
<td>244,702</td>
<td>1,162</td>
<td>210.59X</td>
</tr>
<tr>
<td>Total</td>
<td>314m14s</td>
<td>125m2s</td>
<td>26.17X</td>
<td>192,601,052</td>
<td>267,951</td>
<td>718.85X</td>
</tr>
</tbody>
</table>

Table 11: Boosting state-of-the-art learning-based fault localization

<table>
<thead>
<tr>
<th>Tech Name</th>
<th>Top-1</th>
<th>Top-3</th>
<th>Top-5</th>
<th>MFR</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBFL</td>
<td>59</td>
<td>102</td>
<td>124</td>
<td>13.81</td>
<td>20.44</td>
</tr>
<tr>
<td>MUSE</td>
<td>34</td>
<td>63</td>
<td>73</td>
<td>67.89</td>
<td>74.49</td>
</tr>
<tr>
<td>Mettlaxis</td>
<td>47</td>
<td>88</td>
<td>115</td>
<td>21.45</td>
<td>28.30</td>
</tr>
<tr>
<td>MCBFL</td>
<td>67</td>
<td>112</td>
<td>132</td>
<td>13.20</td>
<td>19.79</td>
</tr>
<tr>
<td>ProFL</td>
<td>78</td>
<td>117</td>
<td>131</td>
<td>12.01</td>
<td>17.96</td>
</tr>
</tbody>
</table>

6.3 RQ3: Boosting Learning-Based Localization

We further apply the basic ProFL to boost state-of-the-art unsupervised-learning-based (i.e., PRFL and PRFL\textsubscript{MA} [83]) and supervised-learning-based (i.e., DeepFL [39]) fault localization. For unsupervised-learning-based techniques, ProFL is generic and can use any existing fault localization techniques to compute initial suspiciousness (Section 4.2); therefore, we directly apply ProFL on the initial suspiciousness computed by PRFL and PRFL\textsubscript{MA}, denoted as ProFL\textsubscript{PRFL} and ProFL\textsubscript{PRFL\textsubscript{MA}} respectively. For supervised-learning-based techniques, ProFL with all the 34 used SBFL formule can serve as an additional feature dimension; therefore, we augment DeepFL by injecting ProFL features between the original mutation and spectrum feature dimensions (since they are all dynamic features), and denote that as ProFL\textsubscript{DeepFL}. The experimental results are shown in Table 11. Note that DeepFL results are averaged over 10 runs due to the DNN randomness [39]. First, even the basic ProFL significantly outperforms state-of-the-art unsupervised-learning-based fault localization. E.g., ProFL localizes 161 bugs within Top-1, while the most effective unsupervised PRFL\textsubscript{MA} only localizes 136 bugs within Top-1. Second, ProFL can significantly boost unsupervised-learning-based fault localization. E.g., ProFL\textsubscript{PRFL\textsubscript{MA}} localizes 185 bugs within Top-1, the best fault localization results on Defects4J without supervised learning to our knowledge. Actually, such unsupervised-learning-based fault localization results even significantly outperform many state-of-the-art supervised-learning-based techniques, e.g., TraPT [40], FLUCCS [67], and CombineFL [85] only localize 156, 160, and 168 bugs from the same dataset within Top-1, respectively [39, 85]. Lastly, we can observe that ProFL even boosts state-of-the-art supervised-learning-based technique. E.g., it boosts DeepFL to localize 216.80 bugs within Top-1, the best fault localization results on Defects4J with supervised learning to our knowledge. The Wilcoxon signed-rank test [75] with Bonferroni corrections [18] for bug ranking also shows that ProFL significantly boosts all the studied learning-based techniques at 0.05 significance level.

Finding 7: ProFL significantly outperforms state-of-the-art unsupervised-learning-based fault localization, and can further boost unsupervised and supervised learning based fault localization, further demonstrating the effectiveness and general applicability of ProFL.

6.4 Industry Case Study

ProFL has already been deployed in Alipay [1], a practical online payment system with over 1 billion global users. Before the deployment, the Alipay developers evaluated ProFL on a large number of real bugs and observed that ProFL consistently/largely boosts the Ochiali fault localization that Alipay used (e.g., localizing 2.1X more bugs within Top-1). We now present a case study with one real-world bug that ProFL has recently helped debug within Alipay. The bug is from Project-A (with 100M+ daily users, anonymized according to the company policy), a Spring-style [4] multi-module microservice system (built with Maven) with 197,402 LoC and 418 tests.
State-of-the-art Ochiai and PRF\textsubscript{MA} localize the buggy method as the 125th and 52nd, respectively. In contrast, within 48min, after exploring 3459 patch executions, the default ProFL (applied on Ochiai with partial PraPR matrices) directly localizes the bug as the 1st, i.e., over 50X improvement in bug ranking. The developers looked into the code and found that although the bug is challenging to automatically fix with the current used repair system PraPR (as shown in Figure 7, this bug requires a multi-edit patch that is not currently supported by PraPR), multiple patches on the actual buggy method was able to mutate the bug and make the originally failing tests pass. In this way, ProFL is able to easily point out the actual buggy location.

7 CONCLUSION
We have investigated a simple question: can automated program repair help with fault localization? To this end, we have designed ProFL, the first unified debugging approach leveraging program repair information as the feedback for powerful fault localization. The results on the widely used Defects4J benchmarks demonstrate that ProFL can significantly outperform state-of-the-art spectrum and mutation based fault localization. Besides, we have demonstrated ProFL’s effectiveness under various settings as well as with an industry case study. Lastly, ProFL even boosts state-of-the-art fault localization via both unsupervised and supervised learning.

ACKNOWLEDGEMENTS
This work was partially supported by the National Key Research and Development Program of China under Grant No. 2017YFB01001803 and the National Natural Science Foundation of China under Grant Nos. 61872008 and 61861130363. This work was also partially supported by National Science Foundation under Grant Nos. CCF-1763906 and CCF-1942430, and Alibaba.

REFERENCES