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Abstract—Mutation analysis has many applications, such as
assessing the quality of test cases, fault localization, test input
generation, security analysis, etc. Such applications involve run-
ning test suite against a large number of program mutants leading
to poor scalability. Much research has been aimed at speeding
up this process, focusing on reducing the number of mutants, the
number of executed tests, or the execution time of the mutants.

This paper presents a novel approach, named MeMu, for
reducing the execution time of the mutants, by memoizing
the most expensive methods in the system. Memoization is an
optimization technique that allows bypassing the execution of
expensive methods, when repeated inputs are detected. MeMu
can be used in conjunction with existing acceleration techniques.
We implemented MeMu on top of PITest, a well-known JVM
bytecode-level mutation analysis system, and obtained, on aver-
age, an 18.15% speed-up over PITest, in the execution time of
the mutants for 12 real-world programs.

These promising results and the fact that MeMu could also
be used for other applications that involve repeated execution
of tests (e.g., automatic program repair and regression testing),
strongly support future research for improving its efficiency.

Index Terms—Memoization, Mutation Analysis, Test Case,
JVM

I. INTRODUCTION

Mutation analysis/testing [1] is a program analysis tech-
nique that involves generating a pool of program variants,
called mutants, by systematically mutating (e.g., replacing an
arithmetic operator with another) program elements and run-
ning the test suite against the mutants. Mutation analysis has
been mainly used for assessing test adequacy by computing
a mutation score, which indicates how good a test suite is
for detecting bugs [1]–[3]. In addition, mutation analysis has
been used for other purposes, such as fault localization [4]–[6],
automatic program repair [7]–[11], test generation [12]–[14]
and prioritization [15], program verification [16], [17], etc.

Despite its success in some practical use cases [18], [19],
mutation analysis suffers from poor scalability. One main
reason behind this problem is that the generated mutants must
be tested against the test suite, and usually a large number
of mutants are generated, making the process lengthy. Much
research has been devoted to reducing the cost of mutation
analysis [20], [21], focusing primarily on: (1) reducing the
number of generated [22]–[24] or executed mutants [25]–[27];
(2) reducing the number of tests [28]–[30] or reordering them
[31]; (3) reducing mutant execution time [32]–[35].

In this paper, we focus on reducing mutant execution
time. The common aspect of most of the approaches in this

category is that they focus, one way or another, on the mutated
code. We contend that the execution time during mutation
analysis can also be reduced by reducing the execution time of
unmutated code. Such a speed-up technique will complement
existing acceleration techniques, as they are orthogonal to
each other. Specifically, we focus on reducing the execution
time of (unmutated) expensive methods, i.e., those that have
a longer execution time relative to other methods. Given that
mutation analysis requires many repeated test executions, and
a mutation involves small (usually single-pointed) changes to
the program, we expect that unmutated expensive methods are
executed frequently. The more frequently these methods are
executed, the bigger the time savings will be. In support of our
idea, an empirical study (see §II) revealed that the execution
of the top 20% most expensive methods account for 43.21%
of the mutant testing execution time (in average).

This paper investigates the use of memoization [36] for
speeding-up the execution the of expensive methods, in the
context of mutation analysis. Memoization is an optimization
technique that stores the results of expensive function calls and
returns the cached result when the same inputs occur again,
and it has been successfully used for speeding up recursive
functions [36], [37], optimizing functional programs [38],
[39], and eliminating performance bottlenecks [40], [41]. We
introduce and evaluate a technique, named MeMu (Memoized
Mutation analysis), for reducing the execution time of expen-
sive methods during mutation analysis via memoization.

Specifically, after identifying the expensive methods, MeMu
records a snapshot of the state of the unmutated program
at the entry and exit point(s) of the those methods, in the
form of input-output pairs and stores them in a memo-table.
When testing the mutants, upon the invocation of an expensive
method, MeMu does a light-weight table look-up to check if
a given input has already been recorded in the memo-table.
If a match for the given input is found, then it updates the
system state with the pre-recorded state, without executing the
expensive method. Otherwise, if the input is not in the memo-
table (i.e., a cache miss occurs), the method is executed.

MeMu is independent of mutant generation or test case
selection/reordering and it is meant to be used in conjunction
with any existing mutation analysis tool. We implemented and
evaluated an instance of MeMu, built on top of the PITest
mutation analysis system [42]. As such, the MeMu prototype
is usable with JVM-based programming languages.

We used MeMu for analyzing the tests of 12 real-world pro-



grams, resulting in 18.15% speed-up over PITest, in average
(min. -0.66%, max. 51.77%), for mutant testing.

For any mutation analysis optimization technique, speed-up
comes with two main challenges: (1) limiting the overhead
costs; and (2) maintaining true value of mutation score. Our
work highlights challenges and solutions in achieving these
goals. For example, memoizing all the expensive methods
results in significant runtime overhead caused by loading
and deserializing large memo-table databases and a large
number of cache misses. We also found that memoizing non-
deterministic methods adversely affects the mutation score.
We introduce a novel technique, that we call provisional
memoization (see §III), to reduce the size of the memo-
table databases and the number of cache misses. Provisional
memoization also identifies certain non-memoizable methods,
e.g., those that involve non-determinism.

We argue that the use of memoization (with provisional
memoization) for speeding-up mutation analysis is promising
and we anticipate that future research will further reduce the
overhead. Such research is worthwhile pursuing, as MeMu
could also be used for speeding up other automated software
quality assurance techniques (e.g., [7], [43], [44]), which also
rely on the repeated execution of a test suite on the program.

II. MOTIVATIONAL EMPIRICAL STUDY

We conducted an empirical study to understand how much
time is used on the repeated execution of the expensive
methods, during mutation testing. The premise of our memo-
ization approach is that the execution of the most expensive
methods amount to a significant percentage of the total mutant
execution time. We used PITest [18], a state-of-the-art JVM
bytecode-based mutation analysis system. It offers 29 mutation
operators (including commonly-used ones [2]) and performs
on-the-fly mutation generation and testing via ASM [45] and
Java instrumentation API [46], mitigating the compilation and
test isolation overhead.

As subjects, we selected 12 real-world programs (see Table
I), which are widely used in mutation analysis research [25],
[47], [48]. Table I lists the programs, the revisions that we
used, and their sizes (number of tests and methods) .

We measured the time it took to generate and test (execute)
the mutants. To measure mutant execution time, we calculated
the difference between time before and after executing the
mutant. By subtracting it from total mutation analysis time, we
obtain an approximation of other activities (e.g., mutant gener-
ation) performed by PITest. To calculate the execution time of
individual methods during mutant execution, we instrumented
mutants and injected before and after advises for using ASM
to calculate the difference between time at the entry and exit
point(s) of the methods. We used a Dell Workstation with 3.70
GHz CPU and 126 GB of RAM running Ubuntu 18.04.4 LTS.
All time measurements are in seconds and are the result of the
average of two executions rounded to the nearest integer.

Table I reports the execution time of the top 20% most
expensive methods, the execution time of all the methods, and
the total time needed by PITest to perform the mutant testing
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Fig. 1: The memoization component of MeMu. Processes are rep-
resented as double-lined rectangles and information produced/con-
sumed by processes using dashed rounded rectangles. Each process
uses the program source code and tests as input.

and other activities such as, mutant generation, mutation score
computation, etc.

We observe that PITest spends, on average, 69.97% of
its time on testing mutants. More importantly, executing the
top 20% most expensive methods in the programs accounted,
in average, for 43.21% of mutant test execution time (min.
10.11%, max. 78.06%). The findings imply that reducing
the execution time of a relatively small fraction of methods
(i.e., the 20% most expensive ones) may lead to a significant
reduction in the overall mutation analysis time. They serve
as motivation for our approach to focus on method-level
optimization for reducing the execution time.

III. MEMOIZED MUTATION ANALYSIS FRAMEWORK

MeMu is designed as a framework with two main compo-
nents: the memoization component and the client component.
The memoization component (see Fig. 1) is responsible for
identifying and memoizing the expensive methods, and passing
this information to the client component. The client component
can be an existing mutation analysis tool that is modified to
intercept the execution of expensive methods identified by the
memoization component so as to check whether or not it can
reuse the already computed results instead of re-executing the
method. We implemented the client component for mutation
testing by modifying PITest [42].

We describe the data used and produced (denoted by x ) by
the processes (denoted by y ) in the memoization component
(see Fig. 1) and the client component. In short, to memoize
a method, MeMu records a snapshot of the state of the
unmutated program at the entry and exit point(s) of the the
expensive methods, in the form of input-output pairs and stores
them in a memo-table. The collection of memo-tables, i.e.,
the memo-tables database 8 , is then passed to the client
component, which uses it to bypass the execution methods,
when a “cache hit” occurs during mutant execution.

It is impractical to memoize all methods, as it leads to large
overhead and in many cases the execution time of a method
may be actually shorter than a look-up in the memo-table.



Hence, as we discussed before, we focus on memoizing only
the expensive methods. Given a program text 1 comprised
of the source code and a test suite, the framework needs first
to determine which methods to memoize.

A. Which methods to memoize?

In order to avoid memoizing non-expensive methods, MeMu
uses two user-provided parameters: a threshold, τ , and a limit,
`, which define the expensiveness criterion 6 . It attempts to
memoize the ` most expensive methods, with execution time
longer than τ milliseconds. However, not all of these expensive
methods are memoizable.

The framework applies a call graph analysis 1 to obtain
the call graph 2 . In our implementation, we used the WALA
program analysis infrastructure [49] to construct a 0-CFA call-
graph, but, of course, other tools may also be used. The call
graph is then used by additional analyses to determine which
of the expensive methods should be memoized.

First, the dependency analysis 4 determines the reflexive,
transitive closure of the call graph, which is also sent to
the client. The resulting dependency relations 5 are used
for identifying methods that should not be memoized. If the
intercepted method (i.e., the one to be memoized) depends on
a mutated/modified method or itself undergoes a mutation/-
modification, then the method shall not be memoized.

Second, the determinacy analysis 2 identifies the methods
that depend on time and/or random generator or return values
computed in such a manner. We refer to these methods as
likely non-deterministic methods. MeMu does not memoize
these methods as they might result in large number cache
misses (due to the way their input/output is obtained) or
change the semantic of programs. The set of methods that are
not likely non-deterministic (i.e., deterministic methods 3 are
used in the next process.

Finally, the profiler 5 instruments the system to measure
the execution time of the likely deterministic methods and
determines the expensive methods 7 that will be memoized.
It also records coverage information of each test case used for
excluding unnecessary test cases, for faster memoization.

B. Memoization

Recording all variables in a memo-table may lead to very
large tables. So, before constructing the memo-tables, MeMu
filters out fields that are untouched. The side-effect analysis
3 determines which method may access which static/instance

fields, either directly or by calling another method. To keep the
size of memo-tables small and optimize table look-up within
the client, the framework only uses the accessed fields 4 . The
Memoizer 6 constructs a minimal memo-tables database 8

of the methods that are deemed memoizable in the previous
steps (i.e., the expensive, deterministic methods). This is done
by applying two filtering steps.

First, MeMu determines which methods will not result in
failures when memoized. This is achieved via provisional
memoization which tentatively memoizes methods and ex-
cludes non-memoizable ones. Specifically, we consider a

memoization attempt on a method as failed if memoizing
the method results in (new) failed tests. In this way, we can
single out non-memoizable methods. Second, before passing
the memo-tables database to the client component, MeMu
removes the methods incurring cache misses when they are
tested against covering tests. This is done by post-processing
the database using the execution information obtained during
provisional memoization.

C. Client Component

The client component for MeMu is constructed by modify-
ing PITest such that it loads the memo-tables database in each
mutant testing process that PITest forks, and we instrument the
mutant code such that the memoizable methods do a light-
weight check before proceeding running their bodies. The
methods check if they are mutated or depend on some mutated
method. If that is the case, no memoization shall take place.
Otherwise, they do a light-weight table look-up based on the
state of the system at their entry points and update the system
state if such a state have occurred previously. Then, the method
immediately returns without executing its body.

IV. EMPIRICAL EVALUATION AND DISCUSSION

We conducted an empirical study to assess whether MeMu
obtains any speed-up in mutant execution time compared to
PITest. We used the same subjects as in the motivational study,
described in §II. We set τ and ` to 1 ms and 20% of number
of methods for each subject program, respectively.

The right hand side of Table I summarizes the information
about MeMu’s execution.

Comparing PITest’s and MeMu’s mutant testing time (i.e.,
the two MT (s) columns in Table I), in 10 out of 12 cases,
MeMu completes the execution faster. Excluding jfreechart,
MeMu results in 18.15% speed-up (on average - minimum
-0.66%, maximum 51.77%) over PITest.

We analyzed the two cases where MeMu did not obtain a
speed-up: jfreechart and joda-time. For the jfreechart system,
our implementation of MeMu fails to completely restore the
system state, so provisional memoization fails to memoize any
methods, so we did not perform memoized mutation testing
for that subject, hence the ”N/A” values the table. The reason
is that jfreechart uses graphic libraries that involve system
states, which are inaccessible through the Java reflection API
[50] used by our framework. We expect that MeMu has the
same problem with other similar systems. However, this is
not a shortcoming of the idea, rather a consequence of our
engineering choice to use reflection and will be addressed in
future work.

Thanks to the provisional memoization algorithm, we have
been able to exclude non-memoizable methods (see the #MM
column). On average, the 11 system (not counting jfreechart)
have 3,521 methods (20% of which is 704). MeMu memoizes,
no more than 1% of the methods (min. 1, max. 50), yet it
results in a considerable amount of time saving.

Provisional memoization ensured that the number of cache
misses (#Miss column) is smaller than that of cache hits (#Hit



TABLE I: Result of applying PITest and MeMu on 12 systems. MT=mutant testing time, Score=mutation score, #MM=memoized methods.
Subject Information PITest Execution Information MeMu Execution Information

Project Name Rev #Test #Method Total (s) MT All (s) MT Top %20 (s) Score #MM MT (s) #Hit #Miss
commons-codec 5ef5 851 792 730 418 283 0.863341 21 220 933,291 45
commons-math 0da6 5,246 8,364 47,460 37,429 17,352 0.781098 41 36,280 81,788 8,638

commons-cli 0b45 390 292 140 55 20 0.897196 5 47 8,962 431
commons-csv f368 306 189 402 282 114 0.841484 3 261 3,998 0

closure-compiler 1dfa 7,907 10,536 64,860 62,665 30,157 0.779994 5 59,493 2,246 54
commons-io 2ae0 132 1,325 2,329 1,682 170 0.805581 1 1,641 2,406 187

commons-fileupload 047f 82 306 275 232 160 0.606796 4 170 3,247 29
jfreechart 2266 2,201 9,110 3,156 1,565 164 0.346555 0 N/A N/A N/A

commons-imaging fd01 93 2,439 4,740 3,954 785 0.422943 7 3,407 475 46
commons-lang 687b 2,295 2,596 1,926 761 594 0.864125 4 367 119 12

joda-time 9a62 4,043 4,366 1,839 1,362 680 0.468076 7 1,371 0 0
commons-geometry-euclidean b36d 1,628 1,934 6,780 6,390 2,696 0.942488 50 4,595 85,709 3,350

column) for the memoized methods. However, the algorithm
is not perfect; for the joda-time system, MeMu is slower than
PITest, because the memoized methods do not result in any
cache hits during the mutant executions.

Finally, we believe the memoization also resulted in a
lossless mutation testing, because for the subject programs
with constant mutation scores between runs, the mutation score
before and after memoization did not change.

V. RELATED WORK

Conventionally, we classify approaches for reducing muta-
tion analysis costs into three major categories [20], [51]: (1)
do fewer approaches strive generating/testing as few mutants
as possible with minimal adverse effect on mutation score
[24]–[28]; (2) do faster approaches are meant to generate and
run mutants as fast as possible (without any concern about
mutation score) [22], [23], [29]–[31], [52], [53]; (3) do smarter
approaches are intended to distribute the workload of testing
mutants into several machines or several cores of a single
machine [18], [54], [55], or factor out shared state between
mutant executions and avoid re-executing them [32]–[35].

MeMu fits in the third category as it applies a semantic-
preserving program optimization method (i.e., memoization
in this case) on the unmutated parts of the mutants to avoid
re-executing (expensive) methods for which the state of the
system at the entry and exit point(s) do not change from
one execution to another. We discuss here the works in this
category, which we consider most related to MeMu.

Split-stream [32], [34] and its modern variants are intended
to avoid repeated execution of part of the code that is shared
between mutants. Mutations targeting the same program el-
ement, result in many mutants that share the same code
before the mutation impact point. Executing this portion of
the mutants (provided that the program is deterministic) will
always result the same output. Split-stream runs these portions
only once and fork different processes for the each mutant
after the mutation point of impact to test individual mutants.
The modern incarnation of split-stream [33] attempts to reuse
shared program states even after mutation point of impact.

Just et al. [35] propose three runtime optimizations that
result in 40% speed up of their MAJOR mutation analysis
system [48]: (1) if a mutation does not result in program state
change immediately after the mutation point, it marks the cor-
responding mutant as survived, i.e., not killed, and terminates
the test execution; (2) even if a mutation infects the system

state in an expression while the change does not propagate to
the subsequent statements, it marks the corresponding mutant
as survived and terminates the test execution; (3) mutants that
infect the state of the system in the same way should only be
executed once.

Since MeMu optimizes the execution of unmutated code and
the memoization does not influence the effect of the mutation,
it can complement existing cost reduction techniques. The
information collection processes can be parallelized with the
pre-processing done by such complementary techniques, in
a non-interfering manner, to further speed-up the mutation
analysis process.

VI. CONCLUSIONS AND FUTURE WORK

The new idea put forward in this paper is speeding up muta-
tion analysis by automatically memoizing expensive methods.
Our optimization is orthogonal to the state-of-the-art cost
reduction techniques for mutation analysis and can be used to-
gether with them to further speed up the process. An empirical
study using state-of-the-art, JVM-based, mutation analysis tool
PITest [18] and 12 real-world programs, revealed that 43.21%
(avg.) of the mutant execution time is spent on executing the
top 20% most expensive methods. This finding supports the
intuition behind the memoization-based approach for speeding
up mutant execution. An additional empirical study showed
that memoizing a small subset of these expensive methods (1%
of all methods) leads to an average of 18.15% speed-up during
mutant testing. We uncovered two specific issues, important
for the successful memoization: identifying non-memoizable
methods and minimizing the number of cache misses during
testing. Provisional memoization shows promise in tackling
these issues. Future work will focus on more light-weight
techniques, based on statistical models, which may be less
costly than provisional memoization. The other analyses used
during memoization can be optimized through parallelization.

We contend that other software quality assurance methods
that rely on repeated execution of the code, such as, automatic
program repair and regression testing, can also benefit from
the memoization idea. Hence, the potential advantages largely
exceed those reported here, supporting future work that will
further optimize the memoization approach.
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