
PraPR: Practical Program Repair via Bytecode Mutation

Ali Ghanbari Lingming Zhang
University of Texas at Dallas, TX 75080, USA
{ali.ghanbari,lingming.zhang}@utdallas.edu

Abstract—Automated program repair (APR) is one of the
recent advances in automated software engineering aiming for
reducing the burden of debugging by suggesting high-quality
patches that either directly fix the bugs, or help the programmers
in the course of manual debugging. We believe scalability,
applicability, and accurate patch validation are the main design
objectives for a practical APR technique. In this paper, we present
PraPR, our implementation of a practical APR technique that
operates at the level of JVM bytecode. We discuss design decisions
made in the development of PraPR, and argue that the technique
is a viable baseline toward attaining aforementioned objectives.
Our experimental results show that: (1) PraPR can fix more
bugs than state-of-the-art APR techniques and can be over 10X
faster, (2) state-of-the-art APR techniques suffer from dataset
overfitting, while the simplistic template-based PraPR performs
more consistently on different datasets, and (3) PraPR can fix
bugs for other JVM languages, such as Kotlin.
PraPR is publicly available at https://github.com/prapr/prapr.

Index Terms—Program Repair, JVM Bytecode, Mutation Test-
ing

I. INTRODUCTION

Debugging is a notoriously time consuming activity that is
responsible for more than 50% of the development time/effort
[1]. So far, a large body of research has been dedicated to
automatically localize [2] or fix software bugs [3]. Automated
Program Repair (APR) is intended to directly fix software
bugs with minimal human intervention which has been under
intense research despite being a young research area [3].

Based on the actions taken for fixing a bug, state-of-the-
art APR techniques can be divided into two main classes: (1)
techniques that monitor dynamic behavior of a program to find
deviations from certain specifications, and heal the program
by modifying its runtime state in case of any abnormal
behavior [4]; (2) techniques that modify static representation
of programs based on various rules/techniques, and use either
tests or formal specifications as the oracle to validate each
generated candidate patch for finding plausible patches (i.e.,
patches that can pass all the tests/checks). Plausible patches
are further checked to identify correct, or genuine, patches
(i.e., patches equivalent to developer patches) [5]–[18].

Scalability, applicability, and accurate patch validation are
often cited as the main design objectives for building practical
APR techniques [19]. Scalability refers to the ability of
an APR technique in handling large, real-world programs.
Applicability is the ability of the technique in handling
different programming idioms, languages, or even different
programming paradigms. Finally, patch validation refers to
the process of classifying the patches generated by the APR
tool into genuine and plausible patches. We introduce a practi-
cal, general-purpose APR technique, named PraPR (Practical

Program Repair) [20], that is operating at the level of JVM
bytecode [21]. By discussing the design decisions made in the
development of PraPR, we argue that the technique is a viable
baseline toward achieving the aforementioned objectives.

II. OVERALL APPROACH

PraPR is based on three classes of mutators that can
be seen as a spectrum of mutators ranging from tradi-
tional mutators (e.g., changing a>=b into a>b) to more
complex program transformation operators that occur fre-
quently in real-world bug-fix commits. In particular, we have
adopted a set of 18 mutators from traditional mutation test-
ing [22] which is augmented with a set of 12 replacement
mutators (e.g., replacing field accesses or method invoca-
tions) and 14 mutators that are responsible for inserting
checks in the vicinity of field dereferences and method calls.

TABLE I: Mutators examples
ID Mutator Illustration
AP y=o.m(x)↪→y=x

RV return x↪→return x+1

FR int x=o.f1↪→int x=o.f2

MR int y=o.m1(x)↪→int y=o.m2(x)

FG int x=o.f↪→int x=(o==null?0:o.f)
MG int y=o.m(x)↪→int y=(o==null?0:o.m(x))

Table I illustrates two ex-
amples from each class
of mutators wherein the
white part lists examples
from traditional mutators,
light-gray block contains
examples from augmented mutators that replace a field name
or a method name with another, and the dark-gray part shows
examples from augmented mutators that insert nullity checks
before dereferences or virtual method calls and use default
values [21] instead of triggering NullPointerException.

We stress that our mutators are designed without any
bias towards our dataset of buggy programs: the mutators
are either from traditional mutation testing or have already
been widely used in existing APR techniques [5]–[7], [23].
To confirm the generality of our mutators, we built a fix-
pattern extraction program (with 4K LoC Java code) based
on the GumTree AST diffing framework [24] to mine real-
world bug-fix commits from HD-Repair dataset [7], and have
confirmed that our mutators also appear in real bug fixes.
xSTORE tempm
...
xSTORE temp1
DUP
IFNONNULL restore
POP
ACONST_NULL
goto escape
restore:
xLOAD temp1
...
xLOAD tempm
INVOKEVIRTUAL ...
escape:

Please note that although these muta-
tors are intended to make small changes
to the programs, implementing most of
the mutators is non-trivial. For example,
shown in the side figure is the skeleton
of the code that is inserted by PraPR
before INVOKEVIRTUAL instructions
when applying the mutator MG. In this
code snippet, we assume that the callee
method returns a reference-typed object,

m is the number of arguments of the callee, and x, depending

https://github.com/prapr/prapr


Buggy
program

Coverage analysis
&

Fault localization

Test
cases

Mutation generation

Mutation
execution

Mutator
frequencies

Plausible
patches

Ranking

PraPR	2	(JDK	1.7)	Fix	Report
Number	of	Plausible	Fixes:	2
Total	Number	of	Patches:	2716
================================================
1.
								Mutator:	ReturningMethodCallGuardMutator
								Description:	the	call	to
toString()Ljava/lang/String;	is	guarded	returning
enclosing	method
								File	Name:
org/mockito/internal/matchers/Same.java
								Line	Number:	29
								Rank:	1
								Total	Rank:	67
								Dump:	mutant-2.class
------------------------------------------------
2.
								Mutator:	NonVoidMethodCallGuardMutator
								Description:	the	call	to
java.lang.Object::toString()Ljava/lang/String;	is
guarded	using	default	value	null
								File	Name:
org/mockito/internal/matchers/Same.java
								Line	Number:	29
								Rank:	2
								Total	Rank:	72
								Dump:	mutant-1.class

Offline processing

Bug-fix
commits Bug-fix pattern

mining

if

? S1 else

S2
if

? S1 else

Buggy AST

Fixed AST

AST-level
diff

...

Mutators

JVM runtime

Build system

C
om

pi
le

d
cl

as
se

s
C

om
pi

le
d

te
st

 c
as

es Dumped
plausible
patches

LOG report for
Mockito-29

Fig. 1: PraPR workflow overview

on the type of the parameters of the callee, could be I (int),
L (long), etc. The mutation is done as follows. First, we
create m temporary local variables for each parameter of the
callee and store the argument values in the variables (using the
leading group of xSTOREs). Then, we check if the receiver
is null (note that we duplicate the reference to the receiver
object since the instruction IFNONNULL consumes an object
reference from the stack): if it is null, we pop the other
copy of the receiver object from the stack, push the intended
default value, and continue normal execution by jumping to
label escape; otherwise, we push the arguments back to stack
and invoke the target method.

An architectural overview of PraPR is depicted in Fig. 1.
PraPR is available in the form of Maven/Gradle plugin and it
is invoked by the build system. The workflow is as follows.
The class files for a buggy program together with a set of test
cases, containing at least one failing test case that exposes
the bug, are fed to the system. In Coverage analysis & Fault
localization phase, by collecting test coverage information, we
compute suspiciousness values (Ochiai [25], by default) for
each covered JVM instruction. Coverage and suspiciousness
information are used by Mutation generation phase to generate
a pool of mutants by applying the mutators described above.
We exhaustively mutate instructions that are covered by all
failing tests, since only such mutations are likely to be fixes. In
Mutation execution phase, we apply all of test cases on each of
the mutants to identify plausible patches. Inspired by [26], we
improve the speed of patch validation by sorting the test cases
based on their previous running time in ascending order hoping
the nonviable mutants get killed as soon as possible. We also
run the originally failing test cases first for they are most likely
to fail again. Plausible patches contain information about the
mutated location and its suspiciousness value. Thus, in the
Ranking phase, we can sort the plausible patches based on their
suspiciousness values in descending order. We break the ties
by using the information about mutation frequencies obtained
by mining HD-Repair dataset of real-world bug fix commits
[7]. Finally, PraPR generates a human-readable fix report that
contains enough information for applying each patch on the
source code. The plausible patches also get dumped onto the
disk, and the users can use various Java decompilers (e.g. [27])
to decompile the mutants and see the mutations in the context
of decompiled source code which increases understandability
of fix reports.

Please note that the upper half of Fig. 1, shows the offline

process of mining mutators, and their frequencies, from HD-
Repair dataset. We use GumTree framework to infer the
operations transforming a buggy program to a fixed one.

III. DESIGN DECISIONS

In this section, we elaborate on the objectives mentioned
in §I and discuss the impacts of design decisions made in
implementation of PraPR on achieving each of the objectives.
A brief comparison to the most recent state-of-the-art APR
techniques is also made.

A. Scalability

An important goal in constructing a practical, industrial-
strength APR technique is to make it scalable to large, real-
world programs. Such a technique should be able to produce
genuine patches, otherwise it might mislead the developers
rather than helping them [19], [28], [29].

PraPR does not need any kind of complicated computation
(e.g., symbolic execution or constraint solving) that limits
scalability. Thanks to this fact and the bytecode-level manipu-
lation, PraPR (with only single thread) is already over an order
of magnitude faster than state-of-the-art SimFix [5], CapGen
[6], JAID [8] (that reduces compilation overhead by bundling
patches in meta-programs), and SketchFix [9] (that curtails
compilation overhead via sketching).

The speed in patch generation and validation makes it pos-
sible for PraPR to use a larger set of mutators to exhaustively
mutate every suspicious location in the buggy program, which
in turn enables the tool explore a larger search space in a
reasonable amount of time. Our experiments show that PraPR
successfully fixes 43/395 bugs from Defects4J V1.2.0 [30],
outperforming state-of-the-art APR techniques (e.g., the most
recent SimFix and CapGen fix 34 and 22 bugs, resp.). We
further applied PraPR on 192 additional bugs from Defects4J
V1.4.0 [31] from which the tool successfully fixed 12 bugs.
Meanwhile, CapGen produces genuine patches for only 2
bugs, while SimFix was unable to generate any plausible patch,
in spite of exhausting its search space for most cases, and
timed out (a 5-hour limit) in 52 bugs. Also, CapGen generates
thousands of plausible but incorrect patches for the additional
bugs, while PraPR shows a decent level of consistency both
in the number of fixed bugs and the false positives.

The notable performance drop of CapGen on the new
dataset is because, for performance reasons, the tool applies
only a subset of its mutators that happen to be ineffective on
the new bugs. Lastly, as also confirmed by SimFix authors,
SimFix was unable to locate reusable code snippets in the new
dataset. This indicates that simplistic bytecode-level mutation
is a viable approach for constructing a scalable APR tool.

B. Applicability

Program source code contains a wealth of information
that researchers might exploit to develop more effective APR
techniques. However, the process of mutation and/or extraction
of fixing ingredients can be significantly different from one
programming language to another. This makes APR techniques



28 appendQuoting(description);
29 -description.appendText(wanted.toString());
29 +description.appendText(wanted == null ? "null" : wanted.toString());
30 appendQuoting(description);

/*28*/ this.appendQuoting(description);
/*29*/ description.appendText(this.wanted == null?null:this.wanted.toString());
/*30*/ this.appendQuoting(description);

Fig. 2: Developer fix for the bug Mockito-29, and decompiled patch generated by Eclipse Decompiler [27] to its right

to be hardwired to work with a specific programming lan-
guage. With the advent of more expressive, and less verbose,
JVM-based programming languages such as Java 8 (which
adds many syntactic sugars to the older versions of the lan-
guage), Kotlin, Scala, and Groovy the need for applicability is
especially pronounced for nowadays many real-world projects
are written in a combination of these languages [32], so the
APR techniques should be applicable in a uniform fashion.

PraPR works at the level of JVM bytecode that makes the
tool JVM language agnostic and readily applicable to more
than 6 popular programming languages [33]. We have applied
PraPR to fix 118 Kotlin bugs from Defexts [32] database, and
the tool successfully fixed 14 bugs. We stress that this is first
study on applying the same general-purpose APR technique
on different programming languages. A similar ratio of fixed
bugs for the Kotlin systems also reduces threats to external
validity for our claims, and shows that simplistic bytecode-
level mutation alleviates the applicability challenge in the
development of practical APR techniques.

C. Accurate Patch Validation

In a practical situation, we usually lack any kind of formal
specifications. Thus, virtually all recent APR techniques de-
pend on test cases so as to verify the generated patches. But
since test cases usually underspecify the desired behavior of
the system, we end up with a large number of plausible but
incorrect patches (a.k.a. test case overfitted patches [34]). In
the absence of an effective automatic classifier, the developer
has to verify each and every one of the plausible patches.

Lately, several techniques for identification of test case
overfitted patches, ranging from manual [28], [34] to fully
automatic [29], [35], has been proposed. Unfortunately, none
of the automatic techniques were applicable in our case; this
is mainly due to two reasons: (1) PraPR makes tiny changes
to the program which are difficult to be distinguished by the
syntactic and semantic heurisitcs studied in [35]; (2) PraPR
targets JVM-based languages, so the idea of fuzzing [29] is
not effective [35]. Furthermore, we realized that anti-patterns
[28] are also not applicable in our research since it is highly
dependent on the C programming language.

We have mined HD-Repair dataset [7] to find the frequency
in which our mutators appear in real-world bug fix commits.
We prioritize our mutators based on the frequency of their ap-
pearance in the dataset. After ranking the patches according to
the Ochiai suspiciousness [25] value of the mutated locations,
we break the ties with regard to the priority of the mutators.
This results in ranking 30/43 patches in Top-1 position.

Backed by our experimental results, we emphasize that
ranking based on the frequencies of the bytecode-level mu-
tators is generalizable to Java and Kotlin. Applying this
technique in experiments with the Kotlin systems also shows
an improvement in the number of patches in Top-1 position.

IV. PRAPR USAGE

We have implemented PraPR as a 1-click APR tool publicly
available on Maven Central Repo [36]. Being compatible with
a variety of testing frameworks (e.g., JUnit, TestNG, and
Spek), PraPR is readily applicable to arbitrary Java projects
under Maven/Gradle build systems (not just Defects4J) and
even projects in other JVM languages in a hassle-free manner,
thereby allowing researchers replicate our experiments.

In a Maven project, in order to use PraPR plugin, all
the developer needs is to add the following snippet under
<plugins> tag in the POM file for the project.
<plugin>

<artifactId>prapr-plugin</artifactId>
<groupId>org.mudebug</groupId>
<version>2.0.0</version>

</plugin>

By default, PraPR shall apply all of its mutators and use
single thread of execution to validated generated mutants.
Also, default output format is LOG; meaning that the tool will
generate human-readable fix reports (the report for Mockito-
29 from Defects4J is shown in Fig. 1). Besides LOG reports,
PraPR can generate two other types of reports: (1) pretty-
printed HTML file for the source files and description of the
patches applied at different locations; (2) compressed XML
file with detailed information about each mutation, suitable for
machine processing. By adding a <configuration> sec-
tion under <plugin>, one can customize the behavior of the
tool. Our companion website [36] contains more information
about PraPR configuration and the details about using PraPR
in Gradle projects. The website also contains instructions for
running the tool from a self-contained Docker image.

Before running PraPR plugin, the user needs to compile
source and test files to generate the .class files. Depending
on the build system, different commands can be used to
invoke the tool. In case of a Maven project, the command
mvn org.mudebug:prapr-plugin:prapr, while for a
Gradle project gradle prapr-repair, is used to invoke
PraPR to fix a bug. Once PraPR finishes running, it will gener-
ate report(s) and dump (mutated) .class files for plausible
fixes. Based on our experience in using PraPR in 900 real-
world Java/Kotlin projects, we emphasize that the generated
fix reports contain enough information for the patches to be
understood and applied at the level of source code. Meanwhile,
the users can always decompile [27] the dumped mutants
to see the patches in the context of the source code that
matches the actual source code for the program. Fig. 2 shows
an example of developer patch and decompiled patch which
shows the patch in the context of original source code (with
automatically generated line number information).

V. RELATED WORK

In §III, we briefly compared the effectiveness of
PraPR with state-of-the-art SimFix [5] and CapGen [6].



In this section, we give a more complete account
of comparison with related APR techniques. Specifi-
cally, we compare PraPR with the APR techniques
that have been evaluated on Defects4J V1.2.0 before,

PraPR

CapGen SimFix

Others

10

1
14

27

6

11

0

0

2

3
1

0 3

7 9

Fig. 3: Fixed bugs dist.

including SimFix, CapGen, JAID
[8], SketchFix [9], ELIXIR [10],
ssFix [11], ACS [12], HD-Repair
[7], xPAR [7] (a reimplementa-
tion of PAR [23]), NOPOL [13],
jGenProg [37] (a reimplementa-
tion of GenProg [14] for Java),
jMutRepair [37] (a reimplementa-

tion of source-level mutation-based repair [15] for Java), and
jKali [37] (a reimplementation of Kali [16] for Java). Fig. 3
illustrates the distribution of the bugs that can be successfully
fixed by PraPR and the aforementioned APR techniques. We
observe that PraPR can fix 10 bugs that have not been fixed by
any of other techniques. Also, the tools are complementary, i.e.
putting all the tools together, we can fix 90+ Defects4J bugs.

We conclude this section by discussing other techniques
that also operate at the level of JVM bytecode. Ma et al.
leveraged domain knowledge to fix cryptography misuses
for Android apps at the bytecode level [38]. Schulte et al.
discussed the possibility to fix bugs through evolution of
assembly code [39]. In their paper [40], Staples et al. introduce
a semi-automatic bytecode repair framework for mitigating
security vulnerabilities. PraPR is the first general-purpose APR
technique at the bytecode level.

VI. CONCLUSION AND FUTURE WORK

We have implemented PraPR, the first practical, general-
purpose APR tool at the JVM bytecode level. The experi-
mental results on the widely used Defects4J V1.2.0 bench-
mark show that PraPR can generate genuine patches for 43
bugs, significantly outperforming state-of-the-art Java repair
techniques, while being 10+X faster; with no learning/search
information, PraPR also avoids the overfitting problem of ad-
vanced techniques on additional bugs from Defects4J V1.4.0.
Lastly, PraPR successfully fixed 14 of the 118 studied bugs
for Kotlin programs. We are currently working on integrating
PraPR with state-of-the-art fault localization [41]–[44].

REFERENCES

[1] https://tinyurl.com/y3qea8go, accessed: Jun-12-2019.
[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on

software fault localization,” TSE, pp. 707–740, Aug. 2016.
[3] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A

survey,” TSE, pp. 34–67, 2017.
[4] F. Long, S. Sidiroglou-Douskos, and M. C. Rinard, “Automatic runtime

error repair and containment via recovery shepherding,” in PLDI, 2014.
[5] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program

repair space with existing patches and similar code,” in ISSTA, 2018.
[6] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware

patch generation for better automated program repair,” in ICSE, 2018.
[7] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”

in SANER, vol. 1. IEEE, 2016, pp. 213–224.
[8] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without

the contracts,” in ASE, 2017, pp. 637–647.
[9] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical

program repair with on-demand candidate generation,” in ICSE, 2018.

[10] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: effective
object oriented program repair,” in ASE, 2017, pp. 648–659.

[11] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in ASE, 2017, pp. 660–670.

[12] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in ICSE, 2017.

[13] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” TSE, pp. 34–55, 2017.

[14] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” TSE, pp. 54–72, 2012.

[15] V. Debroy and W. E. Wong, “Using mutation to automatically suggest
fixes for faulty programs,” in ICST, April 2010, pp. 65–74.

[16] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in ISSTA. ACM, 2015, pp. 24–36.

[17] Z. Y. Ding, Y. Lyu, C. S. Timperley, and C. L. Goues, “Leveraging
program invariants to promote population diversity in search-based
automatic program repair,” in GI. IEEE, 2019, pp. 2–9.

[18] C. S. Timperley, “Advanced techniques for search-based program repair,”
Ph.D. dissertation, University of York, 2017.

[19] X. B. D Le, “Overfitting in automated program repair: Challenges and
solutions,” Ph.D. dissertation, Singapore Management University, 2018.

[20] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via
bytecode mutation,” in ISSTA, 2019, pp. 19–30.

[21] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification, Java SE 8 Edition, 2014.

[22] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” TSE, vol. 37, no. 5, pp. 649–678, 2011.

[23] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE, 2013, pp. 802–811.

[24] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ASE, 2014.

[25] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION, 2007.

[26] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing inspired
by test prioritization and reduction,” in ISSTA, 2013, pp. 235–245.

[27] “Eclipse Class Decompiler ,” https://ecd-plugin.github.io/ecd/.
[28] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-

patterns in search-based program repair,” in FSE, 2016, pp. 727–738.
[29] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better

automated program repair,” in FSE. ACM, 2017, pp. 831–841.
[30] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing

faults to enable controlled testing studies for java programs,” in ISSTA.
ACM, 2014, pp. 437–440.

[31] https://github.com/Greg4cr/defects4j/tree/additional-faults-1.4.
[32] S. Benton, A. Ghanbari, and L. Zhang, “Defexts: A curated dataset of

reproducible real-world bugs for modern jvm languages,” in ICSE, 2019.
[33] ”Wikipedia”, “List of JVM Languages,” https://tinyurl.com/cgy8pqv,

2019, accessed May-19-2019.
[34] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through

test case generation,” in ISSTA. ACM, 2017, pp. 226–236.
[35] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch

correctness in test-based program repair,” in ICSE, 2018, pp. 789–799.
[36] “PraPR,” https://github.com/prapr/prapr, accessed May-27-2019.
[37] M. Martinez and M. Monperrus, “Astor: A program repair library for

java (demo),” in ISSTA, 2016, pp. 441–444.
[38] S. Ma, D. Lo, T. Li, and R. H. Deng, “Cdrep: Automatic repair of

cryptographic misuses in android applications,” in ASIACCS, 2016.
[39] E. Schulte, S. Forrest, and W. Weimer, “Automated program repair

through the evolution of assembly code,” in ASE, 2010, pp. 313–316.
[40] J. Staples, C. Endicott, L. Krause, P. Pal, P. Samouelian, R. Schantz,

and A. Wellman, “A semi-autonomic bytecode repair framework,” IEEE
Software, vol. 36, no. 2, pp. 97–102, 2019.

[41] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in ISSTA, 2019.

[42] J. Sohn and S. Yoo, “Fluccs: using code and change metrics to improve
fault localization,” in ISSTA, 2017, pp. 273–283.

[43] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in ISSTA, 2017, pp. 261–272.

[44] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” OOPSLA, pp. 92:1–92:30, 2017.

https://tinyurl.com/y3qea8go
https://ecd-plugin.github.io/ecd/
https://github.com/Greg4cr/defects4j/tree/additional-faults-1.4
https://tinyurl.com/cgy8pqv
https://github.com/prapr/prapr

	Introduction
	Overall Approach
	Design Decisions
	Scalability
	Applicability
	Accurate Patch Validation

	PraPR Usage
	Related Work
	Conclusion and Future Work
	References

