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ABSTRACT
Test-based generate-and-validate automated program repair (APR)
systems generate many patches that pass the test suite without
fixing the bug. The generated patches must be manually inspected
by the developers, a task that tends to be time-consuming, thereby
diminishing the role of APR in reducing debugging costs.

We present the design and implementation of a novel tool, named
Shibboleth, for automatic assessment of the patches generated by
test-based generate-and-validate APR systems. Shibboleth lever-
ages lightweight static and dynamic heuristics from both test and
production code to rank and classify the patches. Shibboleth is
based on the idea that the buggy program is almost correct and
the bugs are small mistakes that require small changes to fix and
specifically the fix does not remove the code implementing correct
functionality of the program. Thus, the tool measures the impact of
patches on both production code (via syntactic and semantic simi-
larity) and test code (via code coverage) to separate the patches that
result in similar programs and that do not remove desired program
elements. We have evaluated Shibboleth on 1,871 patches, gener-
ated by 29 Java-based APR systems for Defects4J programs. The
technique outperforms state-of-the-art raking and classification
techniques. Specifically, in our ranking data set, in 66% of the cases,
Shibboleth ranks the correct patch in top-1 or top-2 positions and,
in our classification data set, it achieves an accuracy and F1-score
of 0.887 and 0.852, respectively, in classification mode.
A demo video of the tool is available at https://bit.ly/3NvYJN8.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Software comes with bugs and debugging is notorious to be time
consuming activity. Automated program repair [9] (APR) aims for
reducing these costs by fixing bugs with minimal human interven-
tion. Due to its potential in reducing software maintenance costs,
it has remained an active research area [11].

Depending on the actions taken to conduct a repair, APR tech-
niques can be categorized into different classes. The majority of
current APR techniques belong to the generate-and-validate (G&V)
class that attempt to fix the bugs through evolutionary search,
heuristic fix templates, code grafting, or random mutation and vali-
dating the generated patches using certain checks. The majority of
G&V techniques are test-based, i.e., that they validate the generated
patches by running test suite against the patches.

Most test-based G&V APR systems are based the following steps.
First, a fault localization algorithm is applied to the buggy program
to find suspicious program elements. Next, one or more most sus-
picious program elements are transformed based on a variety of
methods (e.g., random mutation, program synthesis, etc.) to gener-
ate a pool of program variants. The available test suite is executed
against the program variants and the ones that pass all the test
cases are kept as plausible patches. A fix report containing details
about plausible patches is then generated and presented to the users
for further manual inspection.

Not all patches that pass the test cases are correct, this is because
test suites only partially specify the desired behavior of the system
(commonly known as weak specification problem [9]), APR tools
generate many patches that merely pass the available tests without
fixing the bug [9, 14] and such patches are called test case overfitted
or incorrect patches. Manually searching for the correct patch is a
time-consuming activity; perhaps even more difficult than fixing
the bug without using any APR tool [14]. In order to alleviate such
manual effort, many techniques are developed for assessing quality
of generated patches. Patch correctness assessment could be in the
form of ranking or classification.

In this paper, we present the engineering details of a tool named
Shibboleth [7], which is based on a novel treatment of automated
patch correctness assessment. Shibboleth relies on the clues from
both production code and test code to assess the correctness of the
generated patches. The idea underlying Shibboleth is inspired by
the competent programmer hypothesis [4] and the previous research
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Figure 1: Architecture of Shibboleth

that determined that code-removing program transformations are
anti-patterns in the context of APR [15]. Specifically, we posit that
the programmer writes her program almost correctly insofar as any
bug fixing activity involves small changes to the program text and
does not remove code implementing existing desired functionality.
Therefore, we expect a correct patch to impact production code
less than an incorrect patch and not to decrease code coverage of
originally passing test cases by removing tested program elements
already satisfy the program requirements specification. The impact
of patches is captured using three complementary features: syntactic
(in terms of textual similarity), semantic (in terms of similarity of
execution traces), and the code coverage of the originally passing
test cases.

Given a collection of patches, Shibboleth groups and sorts the
patches in such a way that groups of patches that are more likely to
be correct appear before the ones that are less likely to be correct
in the fix report. Shibboleth can also classify the patches into likely
correct and likely incorrect ones. As such, the users of test-based
G&V APR systems are the envisioned users and beneficiaries of
Shibboleth.

Using a large set of APR-generated and human-written patches,
based on data used by previous research, we have empirically eval-
uated Shibboleth. Specifically, we have applied Shibboleth on 1,871
patches [7]. The tool achieves an accuracy and F1-score of 0.887 and
0.852, respectively, outperforming state-of-the-art PATCH-SIM [19],
CIP [22], ODS [21], and the static patch classification system by
Tian et al. [16]. We compare the ranking capability of Shibboleth
with state-of-the-art patch ranking systems CIP [22], ObjSim𝑚ℎ [5],
an Ochiai-based [18] ranking approach, and a random baseline.
Random baseline simulates the situation where no ranking mech-
anism is in place. The results show that, in our ranking data set,
in 43% (66%) of the 197 studied bugs, Shibboleth ranks the correct
patch in top-1 (top-2) positions, outperforming CIP, ObjSim𝑚ℎ ,
Ochiai-based ranking, and the random baseline.

The source code of Shibboleth and its usage instructions are
publicly available [8]. Additionally, a demo video of the tool is
available at https://bit.ly/3NvYJN8.

2 THE SHIBBOLETH APPROACH
Shibboleth uses three measures to assess the impact of patches on
production and test code and ranks/classifies the patches based on
a combination of these measures.

2.1 Measures
We analyze the behavior of the program before and after patching to
directly measure the behavioral similarity of the patched program to
its original version. To this end, we calculate the cosine similarity
of what we call Statement-Count Spectra, denoted SCS, for the
program before and after patching. Statement-Count Spectrum is
vector of fixed length, each element of which denotes the number
of times a particular type of statement is executed [7].

We quantify the amount of deleted desired program elements by
calculating the difference in branch coverage of the originally pass-
ing test cases before and after patching. We define BC as the differ-
ence in branch coverage of the passing test cases before and after
patching.

To calculate the syntactic similarity, Shibboleth computes the
token-level syntactic similarity of the patched version of the pro-
gram with respect to its original version. Then it calculates the
cosine similarity of the resulting vectors, denoted as TS.

We emphasize that behavioral similarity, branch coverage, and
token-level syntactic similarity capture the change to the original
program from different perspectives and are complementary to
each other. Combining the three boosts Shibboleth’s effectiveness.
We refer the readers to our technical paper [7] for more details on
these measures.

2.2 Shibboleth Architecture
The steps taken by Shibboleth to compute TS, SCS, and BC are
sketched in Figure 1. The buggy and patched versions of the pro-
gram are compiled (step 1○) to obtain their class files. The source
files are parsed and analyzed (in step 2○) to obtain TS. The binary
class files are instrumented so as to gather information about the
frequency of each covered instruction as well as branch coverage
( 3○). The collected coverage and spectrum information are used to
calculate SCS (in step 4○) and BC (in step 5○). Finally, the three
calculated values are used as features for classification (in step 6○)
or ranking (in step 7○).

The input to both ranking and classification subsystems is a set
Π of patches and the functions BC, TS, and SCS measures for each
patch 𝜋 ∈ Π.

The output of the classification subsystem is a label, either COR-
RECT or INCORRECT, describing whether or not the patch is likely
correct or likely incorrect. The subsystem is a Random Forest clas-
sifier trained on all our data points (the data points corresponding
to the example bugs in our demo package [8] are excluded). Among
five other classical machine learning algorithms, Random Forest
proved to perform the best [7].

The output of the ranking subsystem is a sequence of patches
paired with their ranks, which is sorted in ascending order of the
ranks. Our ranking subsystem implements an algorithm that re-
cursively sorts and groups the patches via the aforementioned
measures in tandem. The algorithm groups and sorts the patches
(in descending order), first based on their impact on branch cover-
age, then it breaks the ties by grouping and sorting (in descending
order) based on token-level similarity, and finally it breaks any
remaining ties by grouping and sorting (in descending order) based
on behavioral similarity.

https://bit.ly/3NvYJN8
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The intuition behind this ranking comes from observations we
made about BC, TS, and SCS values: BC is the most effective
measure, while TS and SCS are equally effective in ranking the
patches. We observed that the algorithm is robust to the order of
comparing and sorting according to TS and SCS, but comparing
and sorting using BC has to be done first for achieving the best
results. We attribute this to the fact that in the cases where BC
does not rank the correct patch in the top-1 position, all the patches
wind up with equal BC values and most of such sets of patches can
be ranked using TS and SCS.

3 IMPLEMENTATION
The current implementation of Shibboleth targets Java, but the
approach described in the previous section does not make any as-
sumption about the programming language, and we emphasize
that our technique is programming language agnostic and it can be
implemented for other programming languages, with some engi-
neering effort.

Shibboleth uses the ASM bytecode manipulation framework and
relies on Java Agent technology to instrument the target program
and calculate statement count spectra and branch coverage. The tool
performs several optimizations to reduce running all the test cases
as well as running the program over and over again. Specifically,
to minimize the need for running test cases, Shibboleth calculates
method coverage information before profiling and only runs the
covering passing test cases for calculating statement count spectra
and branch coverage. The tool also calculates branch coverage and
statement count spectrum vector at the same time to reduce the
need to run the program twice.

These three dynamic analyses are implemented carefully using
bit manipulation and best practices in writing efficient Java pro-
grams to reduce the instrumentation overhead. Thanks to such
an implementation, we observed an overhead of only 10.24% on
test execution, which makes Shibboleth remarkably more efficient
and faster that virtually all the existing dynamic patch correctness
assessment techniques.

To calculate the textual similarity, we used the Java Parser library
to parse the program into tokens, before and after patching, and
count the tokens to obtain frequency vectors before calculating
their cosine similarity.

For implementing the classification subsystem, we used Python’s
scikit-learn machine learning library [13].

Shibboleth is implemented as a one-click Maven-plugin, as well
as a command-line tool, and is publicly available [8].

4 EMPIRICAL EVALUATION
We evaluated Shibboleth’s performance by comparing its ranking
and classification effectiveness with other available patch correct-
ness assessment techniques on a data set of APR-generated and
human-written patches.

We constructed a patch data set by combining the set of human-
written patches from Defects4J v2.0.0 bug database [3] and four
curated patch data sets, used in recent studies [17, 19, 21, 22], gen-
erated by 29 APR systems. After a thorough pre-processing and
manual analysis [7], we were left with 1,871 patches, 778 of which
are labelled as correct while 1,093 are labelled as incorrect.

For evaluating ranking performance of Shibboleth, we constructed
our ranking data set as follows. We excluded the correct patches
that were not paired with any incorrect patches, as ranking a single
correct patch does not make sense. This resulted in 1,290 patches
among which 197 are labelled as correct and the rest 1,093 are
labelled as incorrect.

4.1 Baseline Approaches
We compare Shibboleth’s performance with a naive random base-
line obtained via the hypergeometric probability of a correct patch
appearing in top-1 or top-2. We also compare Shibboleth with the
latest version of ObjSim𝑚ℎ [5] capable of handling multi-hunk
patches studied in this paper, CIP [22], and Ochiai-based ranking.

4.2 Results
Our empirical evaluation shows that Random Forest is the best
model to use with Shibboleth and it outperforms state-of-the-art
static and dynamic patch classifiers by achieving an accuracy and
F1-score of 0.887 and 0.852, respectively.

We also observed that the ranking based on BC, TS, and SCS,
with this order, results in the best ranking performance and Shib-
boleth ranks a correct patch in the top-1 (top-2) position for 43%
(66%) of the bugs and it outperforms state-of-the-art patch ranking
techniques.

5 SHIBBOLETH USAGE
After checking out Shibboleth from [8] and installing it on the
local Maven repository, the tool will be available in the form of a
Maven plugin. In order to use Shibboleth to assess the correctness
of the patches, the user needs to add the following snippet under
<plugins> tag in the POM file of the target project.
<plugin >

<groupId >edu.iastate </groupId >

<artifactId >shibboleth -maven -plugin </artifactId >

<version >1.0- SNAPSHOT </version >

<configuration >

<!-- parameters -->

</configuration >

</plugin >

The tool expects a CSV file, named input-file.csv, under the
base directory of the project. The input file is intended to contain
information about the patches. Each row of this file describes a
patch and has to have the following format.
Id,Unused ,Patched -Methods ,Patched -Class -Files

Where Id is a unique integer identifier of the patch correspond-
ing to the line, Unused is an unused value that is ignored by the tool,
Patched-Methods is a semicolon-separated list of fully qualified
names of the patched methods, which is used during instrumenta-
tion, Patched-Class-Files is a semicolon-separated list of class
file names for the patched classes.

The user can configure Shibboleth by setting parameter values
under the tag <configuration>. Table 1 summarizes the parameters
and their default values.

After setting up Shibboleth, the tool can be invoked via the
command mvn edu.iastate:shibboleth-maven-plugin:rank
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Table 1: Shibboleth Maven plugin parameters

Parameter Description
<targetClasses> Target application classes to be transformed. By default, ${groupId}*, i.e., all application classes.
<excludedClasses> Target application classes to be excluded from transformation. By default, all test cases are selected, i.e., *Tests,

*Test, *TestCase*.
<excludeTestClasses> Whether or not test classes should be excluded. By default, true, i.e., exclude test classes during coverage

analysis.
<includeProductionClasses> Whether or not include production classes. By default, true, i.e., all classes under target/classes shall be included.

<targetTests> Target test classes to be included. By default, *Tests, *Test, *TestCase*, all classes that end with Tests or Test,
or contain the word TestCase.

<excludedTests> Target test classes to be excluded.
<inputFile> By default, input-file.csv, a CSV file containing some basic information about the patches.

<childJVMArgs> By default, -Xmx16g, i.e., maximum 16 GB of heap space for child JVM processes for profiling, etc.

to rank the patches or the command mvn edu.iastate:shibboleth-
maven-plugin:classify to classify them.

For more information and a demo, please see the companion
video at https://bit.ly/3NvYJN8.

6 RELATEDWORK
We discuss how Shibboleth fits among patch correctness assessment
systems for APR. Readers are encouraged to refer to Monperrus’
literature review [11], for a more comprehensive account of related
work on patch classification, and also APR approaches that generate
patches aiming to avoid incorrect patches in the first place.

Some techniques, notably PraPR [6], mutate all the locations with
non-zero suspiciousness values and rank plausible patches based
on Ochiai suspiciosness value of the patched locations, after the
fact. Shibboleth significantly outperforms Ochiai-based ranking.

S3 [2] uses static syntactic and semantic features to quantify
proximity of the generated patch to the original program and prior-
itize the patches that are close to the original program over the ones
that involve significant modifications. Prophet [10], ELIXIR [12],
and ODS [21] use pre-trained statistical models to rank and/or
classify the patches based on syntactic features. We observed that
Shibboleth outperforms state-of-the-art ODS in classification and
we leave re-implementing these tools and comparing their ranking
performance for a future work.

Tian et al. [16] revisit the preliminary idea by Csuvik et al. [1]
and show that the technique is as effective as PATCH-SIM [19] and
it outperforms ODS. Shibboleth correctly classifies the majority of
the patches and it outperforms the technique introduced in [16].

PATCH-SIM [20], ObjSim [5] and CIP [22] are dynamic patch
classification/ranking tools. Shibboleth outperforms these tools,
while it is computationally less demanding.

7 CONCLUSIONS
Shibboleth is a novel tool for patch correctness assessment tech-
niques which, unlike existing approaches, takes into account the
impact of patches on both production and test code and it relies on
a simpler set of assumption. Shibboleth uses light-weight measure-
ments making it computationally efficient. Our empirical evaluation
showed that Shibboleth ranks a correct patch in the top-1 (top-2) po-
sition for 43% (66%) of the bugs, outperforming state-of-the-art rank-
ing approaches. The tool also outperforms state-of-the-art patch

classification techniques by achieving an accuracy and F1-score of
0.887 and 0.852, respectively. Shibboleth is publicly available [8].

REFERENCES
[1] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László Vidács. 2020. Utilizing

Source Code Embeddings to Identify Correct Patches. In IBF. 18–25.
[2] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.

2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In FSE. 593–604.

[3] Defects4J Contributors. 2020. http://bit.ly/2PY3yDa. Accessed: 05/22.
[4] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints

on test data selection: Help for the practicing programmer. IEEE Computer 11
(1978), 34–41.

[5] Ali Ghanbari. 2020. ObjSim: Lightweight Automatic Patch Prioritization via
Object Similarity. In ISSTA. 541–544.

[6] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In ISSTA. 19–30.

[7] Ali Ghanbari and Andrian Marcus. 2022. Patch Correctness Assessment in
Automated Program Repair Based on the Impact of Patches on Production and
Test Code. In ISSTA. to appear.

[8] Ali Ghanbari and Andrian Marcus. 2022. Shibboleth: Hybrid Patch Correctness
Assessmentin Automated Program Repair. https://github.com/ali-ghanbari/
shibboleth-demo Accessed: 05/22.

[9] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. CACM 62 (2019), 56–65.

[10] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In POPL. 298–312.

[11] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr.

[12] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. Elixir:
Effective object-oriented program repair. In ASE. 648–659.

[13] scikit-learn Contributors. 2020. scikit-learn: Machine Learning in Python.
http://bit.ly/3a70cZt Accessed: 05/22.

[14] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
cure worse than the disease? overfitting in automated program repair. In FSE.
532–543.

[15] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In FSE. 727–738.

[16] Haoye Tian, Kui Liu, Abdoul Kader Kaboreé, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F. Bissyandé. 2020. Evaluating representation learning of code
changes for predicting patch correctness in program repair. In ASE. 981–992.

[17] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far are We?. In ASE. 968–980.

[18] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. TSE 42 (2016), 707–740.

[19] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In ICSE. 789–799.

[20] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In ICSE. 416–426.

[21] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus. 2021. Automated
Classification of Overfitting Patches with Statically Extracted Code Features. TSE
(2021), 1–1.

[22] Yuan Yuan and Wolfgang Banzhaf. 2020. Toward Better Evolutionary Program
Repair: An Integrated Approach. TOSEM 29 (2020), 1–53.

https://bit.ly/3NvYJN8
http://bit.ly/2PY3yDa
https://github.com/ali-ghanbari/shibboleth-demo
https://github.com/ali-ghanbari/shibboleth-demo
http://bit.ly/3a70cZt

	Abstract
	1 Introduction
	2 The Shibboleth Approach
	2.1 Measures
	2.2 Shibboleth Architecture

	3 Implementation
	4 Empirical Evaluation
	4.1 Baseline Approaches
	4.2 Results

	5 Shibboleth Usage
	6 Related Work
	7 Conclusions
	References

