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ABSTRACT
Test-based generate-and-validate automated program repair (APR)
systems often generate plausible patches that pass the test suite
without fixing the bug. So far, several approaches for automatic as-
sessment of the APR-generated patches are proposed. Among them,
dynamic patch correctness assessment relies on comparing run-
time information obtained from the program before and after patch-
ing. Object similarity-based dynamic patch ranking approaches,
specifically, capture system state snapshots after the impact point
of patches and express behavior differences in term of object graphs
similarities. Dynamic approaches rely on the assumption that, when
running the originally passing test cases, the correct patches will
not alter the program behavior in a significant way, but such patches
will significantly change program behavior for the failing test cases.

This paper presents the results of an extensive empirical study
on two object similarity-based approaches, i.e., ObjSim and CIP, to
rank 1,290 APR-generated patches, used in previous APR research.
We found that although ObjSim outperforms CIP, in terms of the
number of patches ranked in top-1 position, it still does not offer
an improvement over random baseline ranking, representing the
setting with no automatic patch correctness assessment in place.
This observation warrants further research on the validity of the
assumptions underlying these two techniques and the techniques
based on similar assumptions.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Automated program repair (APR) techniques are categorized into
different classes [20]. The majority of current APR techniques be-
long to the search-based class, aka generate-and-validate ( G&V),
that attempt to fix the bugs through evolutionary search [19, 44],
heuristic fix templates [8, 15], code grafting [1, 35], or random mu-
tation [9, 29] and validating the generated patches using certain
checks. The majority of G&V techniques are test-based [8, 9, 15,
18, 19, 22, 24, 25, 30, 35], i.e., they validate the generated patches
by running the test suite against the patches, capable of targeting
a wide rage of defects, while others are purely static [16, 26, 33],
targeting compilation errors or specific classes of bugs.

In the context of test-based G&VAPR techniques, a patch passing
all the test cases is referred to as a plausible patch. A plausible patch
is called correct if it eliminates the bug. APR tools generate many
plausible patches that do not fix the bug [20, 31], and such patches
are called incorrect patches. Users of APR tools must manually
examine many plausible patches to find and apply a correct one.
In order to alleviate such manual effort, several techniques are
developed for assessing the correctness of plausible patches [27].
Some techniques classify the plausible patches into likely correct
(or incorrect) ones, so the users may need to inspect only a subset
of the patches [3, 5, 12, 21, 32, 34, 37–39, 41, 43]. Other techniques
rank the plausible patches based on their likelihood of being correct,
so the users may find a correct patch faster [14, 44]. The techniques
rely on static code features [5, 41], run-time information [3, 14, 21,
38, 39, 43, 44], or use a combination of both [34].

Dynamic patch correctness assessment techniques work by com-
paring the runtime behavior of the patched program with its un-
patched version. The approaches differ from one another primarily
by the way in which they capture and quantify the difference in
program behavior. For example, PATCH-SIM [38] relies on path
spectra [17] as an abstraction of the program behavior and uses
Longest Common Subsequence algorithm to quantify the differ-
ences. Another family of approaches [3, 39] use dynamically in-
ferred invariants as an abstraction of the program behavior and use
syntactic distance metrics to quantify the differences. ObjSim [14]
and CIP [44] quantify the behavior change by comparing system
state snapshots at the exit points of patched methods. The two
techniques are designed for programs written in JVM-based pro-
gramming languages, wherein the system state, observable from the
test code, is captured in the form of object graphs, hence the name
object similarity-based. Dynamic patch correctness assessment ap-
proaches are based on the assumption that correct patches do not
alter the program behavior significantly, when running the origi-
nally passing test cases, but such patches result in larger program
behavior differences, when running failing tests [3, 14, 38, 39].
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Ranking of plausible patches makes sense only for APR systems
continue searching even after finding the first plausible patch, while
classification can be applied in either case at the cost of possibly
leaving the user with the task of manually checking the patches
within each class of likely correct and likely incorrect patches. We
believe there is a need for both kind of assessment methods. The
pursuit for fixing more complex bugs (e.g., in Repairnator [28]) and
finding more correct patches within the search space of existing
repair tools (e.g., in UniAPR [4]) implies that automated ranking of
plausible patches is of practical importance. However, we empha-
size that evaluating the performance of patch ranking techniques
must be accompanied by a comparison with random ranking, repre-
senting the setting with no automatic patch correctness assessment
in place. Given the fact that manual inspection of patches is time-
consuming and patch correctness assessment involves semantic
reasoning, which is not automatable [23], we believe that any auto-
matic patch ranking technique, slightly better than random ranking,
would be highly valuable.

This paper focuses on object similarity-based dynamic tech-
niques for ranking APR-generated plausible patches, namely, Ob-
jSim and CIP. ObjSim is an improved variant of the technique intro-
duced by Ghanbari [14] (see §2) and CIP is sub-system of ARJA-E
APR tool [44]. We present an empirical study with two main goals:
(1) compare ObjSim and CIP on a significantly larger data set of
patches than that of the original works [14, 44]; (2) compare the
champion technique to a random ranking baseline obtained by hy-
pergeometric probability [2] of a correct patch appearing in top-1 or
top-2, representing a setting with no automated patch correctness
assessment mechanism in place. Specifically, we rank 1,290 patches
generated by 29 APR systems for real-world bugs from Defects4J
data set [10], used in prior research [11, 34, 38, 41]. We observed
that in 19.8% (47.7%) of the cases, ObjSim ranks the correct patch
in top-1 (top-2) position, meanwhile CIP ranks 9.6% (42.1%) of the
correct patches in top-1 (top-2) position. Since these observations
are of statistical significance, we conclude that ObjSim outperforms
CIP in terms of the number of patches ranked in top-1 (top-2) posi-
tion. We then compared ObjSim with random baseline ranking, and
the comparison could be used to measure the amount of improve-
ment we could possibly get from such a technique in real-world
applications. In other words, a ranking technique outperforming
random ranking can potentially help popularity of APR in everyday
programming by helping the users find the correct patch(es) with
minimal effort. As per our analysis, ObjSim does not offer any im-
provement over random ranking. This observation warrants further
research on the validity of the assumptions underlying these two
techniques and the techniques based on similar assumptions.

In summary, the main contributions of this study are:

(1) Empirical study shedding light on the ranking performance
of two dynamic patch ranking systems, ObjSim and CIP.
We provide data supporting the claim that ObjSim is more
effective than CIP.

(2) We compare the ranking effectiveness of the champion tech-
nique to random ranking, and provide empirical evidence
that it offers no improvement over random ranking.

Studied software artifacts, i.e., ObjSim and CIP, and our data, are
publicly available [13].

2 BACKGROUND
In this section, we describe ObjSim, an improved version of the tech-
nique introduced in [14], capable of handling multi-hunk patches,
and CIP [44]. Both techniques depend on run-time information and
use object similarity to assess the quality of plausible patches.

2.1 The ObjSim Approach
ObjSim [14] is a lightweight automatic patch ranking system based
on object similarity, designed to handle patches applied to single
program source location. However, patches can extend to multi-
ple locations, commonly referred to as multi-hunk patches. In this
paper, we extend ObjSim to handle multi-hunk patches. ObjSim
assumes that patches resulting in a system state more similar to
that of the unpatched program, when executing passing test cases,
and less similar state on failing tests, are more likely to be correct.
The tool instruments the patched methods and monitors the ex-
ecution of the program to record system state snapshots at their
exit points, before and after patching. The technique has four main
steps described below.

Compilation and pre-processing. ObjSim compiles the original
and the patched version of the project (if the patch is not already
in bytecode format) to obtain buggy and patched class files. The
tool obtains the full name of the patched methods by parsing the
patch diff files, extracting patched line numbers of the patched
statement(s), and retrieving the method names from compiled class
files based on the line numbers.

Profiling. Unlike the older version of ObjSim [14], the improved
version of the tool does not depend on the users to provide sus-
piciousness values for the patched locations, instead, it finds out
which test methods cover which lines and calculates the Ochiai
spectrum-based suspiciousness values [36] for the patched locations
based on that. In this step, the tool also identifies the fields accessed
by the patched methods directly or indirectly. This information is
used for compactly capturing system state snapshots.

Instrumentation and test execution. ObjSim runs the original and
patched program under covering passing and failing test cases and
records the system state at the exit point(s) of the patched methods.
By system state, wemean: (1) the set of object graphs reachable from
the escaping objects passed to the patched method; (2) returned
object; and (3) the static fields accessed by the method.

Similarity analysis and patch ranking. Once the system state
snapshot pairs for the buggy program and its patched version are
obtained, the tool calculates the similarities between snapshots in
a pairwise manner and averages them. For each patch covered by a
passing test case, an average distance of𝑑𝑖𝑠𝑡𝑝 is calculated (note that
a single test case might result in multiple snapshots as it might call
the patched method multiple times). Similarly, for a patch covered
by a failing test case, an average distance of 𝑑𝑖𝑠𝑡 𝑓 is calculated. The
average distances calculated for each patch, associated with each
test case, are used for ranking as sketched below.

In order to rank the patches, ObjSim groups the patches based
on the set of test cases covering them. The patches within each
group are sorted based on the average similarity measures described
above. Roughly speaking, within each group, for a given passing
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test case, the tool assigns the patches scores depending on how
large their 𝑑𝑖𝑠𝑡𝑝 are relative to each other. Similarly, for a given
failing test, ObjSim assigns the patches scores depending on how
large their 𝑑𝑖𝑠𝑡 𝑓 values are relative to each other. The scores for
each patch are averaged so as to sort the patches in descending
order of their average score. The groups are sorted based on the
maximum Ochiai suspiciousness value of the patches within each
group. Once sorting is finished, the patches get ranked with tied
patches receiving worst-case rank.

To keep the paper self-contained, we describe how ObjSim calcu-
lates the similarity between two object graphs. Given two objects
𝑠1 and 𝑠2, 𝑑𝑖𝑠𝑡ObjSim(𝑠1, 𝑠2) is computed via DFS traversal of the ob-
ject graphs reachable from 𝑠1 and 𝑠2 and accumulating distances of
“sub-objects” of the objects, recursively. More concretely, 𝑑𝑖𝑠𝑡ObjSim
is defined recursively as follows.

● 𝑑𝑖𝑠𝑡ObjSim(𝑠1, 𝑠2) = 0 if 𝑠1, 𝑠2 are equal references or equal
primitive-typed objects.
● 𝑑𝑖𝑠𝑡ObjSim(𝑠1, 𝑠2) = 1 if 𝑠1, 𝑠2 are unequal primitive-typed
objects of the same type.
● 𝑑𝑖𝑠𝑡ObjSim(𝑠1, 𝑠2) = Levenshtein distance between 𝑠1 and 𝑠2,
if 𝑠1, 𝑠2 are arrays of the same component type.
● 𝑑𝑖𝑠𝑡ObjSim(𝑠1, 𝑠2) = ∑𝑛

𝑖=1 𝑑𝑖𝑠𝑡ObjSim(𝑣(𝑓𝑖 , 𝑠1), 𝑣(𝑓𝑖 , 𝑠2)) if 𝑠1,
𝑠2 are objects of the same type 𝜏 and 𝑓1, . . . , 𝑓𝑛 are the fields
declared or inherited by 𝜏 . Furthermore, 𝑣(𝑓 , 𝑜) is defined to
be the value of field 𝑓 for object 𝑜 .
● 𝑑𝑖𝑠𝑡ObjSim(𝑠1, 𝑠2) = +∞ if 𝑠1, 𝑠2 are objects of different types.

2.2 The CIP Approach
CIP is a post-processing system for alleviating the effect of incorrect
patches generated by the ARJA-E APR system [44]. We refer the
reader to the original publication [44] for more details, yet we
describe CIP here to make the paper self-contained.

CIP is a two-tier patch correctness assessment approach. First, it
classifies the patches into two classes (i.e., likely correct and likely
incorrect). The classification is based on object distance, that is,
the patches that do not alter the system state compared to that of
resulted from the original program (i.e., an object distance of 0) on
passing test cases, are classified as likely correct, while the rest are
classified as likely incorrect.

Second, it ranks the likely incorrect patches by applying three
heuristics in tandem: (1) cumulative Ochiai suspiciousness values
of the patched location(s); (2) average normalized object distance
values calculated for the patched method(s) on passing tests; and
(3) a heuristic ranking of the repair operations used to transform
the program in question.

In order to compute the object similarities used for classification
and ranking, CIP first applies the patch on a copy of the original
program, obtaining the patched method full name and signature,
and compiling the original and patched version of the program. The
tool then runs the original, buggy program on (originally) passing
test cases and records input-output pairs for the patched methods,
i.e., the input system state upon which the patched methods are
invoked and the system state resulting from running the patched
methods. As in ObjSim, by system state, we mean the set of object
graphs reachable from the objects passed to the patched method
and the static fields accessed by the method. Next, CIP uses Java

reflection API to invoke the patched methods upon the recorded
inputs and records the output produced by the methods. Finally,
the recorded output object graphs are compared with each other to
calculate their distance.

The way CIP calculates object distances is rather different than
that of ObjSim, as CIP (except in the calculation of Levenshtein dis-
tance of string values) takes into account how different primitive val-
ues are from each other. More formally, given two object references
𝑠1, 𝑠2, CIP calculates normalized distance between the object graphs

reachable from the references using 𝑑𝑖𝑠𝑡CIP(𝑠1, 𝑠2) =
𝑑(𝑠1, 𝑠2)

1 + 𝑑(𝑠1, 𝑠2)
where 𝑑(𝑠1, 𝑠2) is defined recursively as follows.
● 𝑑(𝑠1, 𝑠2) = 1, if 𝑠1, 𝑠2 are unequal Boolean values.
● 𝑑(𝑠1, 𝑠2) = ⋃︀𝑠1 − 𝑠2⋃︀, if 𝑠1, 𝑠2 are numeric values.
● 𝑑(𝑠1, 𝑠2) = Levenshtein distance between 𝑠1 and 𝑠2, if 𝑠1, 𝑠2
are strings.
● 𝑑(𝑠1, 𝑠2) = ∑𝑛

𝑖=1 𝑑(𝑠1(︀𝑖⌋︀, 𝑠2(︀𝑖⌋︀), if 𝑠1, 𝑠2 are arrays of length
𝑛. 𝑠(︀𝑖⌋︀ denotes the 𝑖th component of the array 𝑠 .
● 𝑑(𝑠1, 𝑠2) = ∑𝑛

𝑖=1 𝑑(𝑣(𝑓𝑖 , 𝑠1), 𝑣(𝑓𝑖 , 𝑠2)), if 𝑠1, 𝑠2 are objects of
type 𝜏 and 𝑓1, . . . , 𝑓𝑛 are the fields declared or inherited by 𝜏
and accessed in the original program. Furthermore, 𝑣(𝑓 , 𝑜)
is defined to be the value of field 𝑓 for object 𝑜 .
● 𝑑(𝑠1, 𝑠2) = 0, otherwise.

2.3 Example
We illustrate how ObjSim and CIP work through an example. Fig-
ure 1 depicts a faulty Java implementation of a program that given
a string str, an integer k, and a character c is intended to return
true if c occurs in str at any index 0 ≤ j ≤ k and false, otherwise.
Table 1 lists two test cases that exercise the buggy method find
with different inputs, one of which reveals the fault. T-1 is a failing
test, while T-2 is a passing test case. Figure 2 illustrates two possible
patches that a typical G&V APR tool (e.g., [25]) may produce in
an attempt to fix Finder. While both patches result in code that
passes both T-1 and T-2 (i.e., they are plausible), only one of them
is correct (i.e., Patch 1).

ObjSim instruments the buggy method(s), as well as its patched
version, and runs it against (covering) passing test cases so that
snapshots of the system state at the exit points of the method(s) are
recorded. The recorded snapshots corresponding to the patches are
then compared with the snapshots corresponding to the original
program to calculate the distances, to rank the patches based on
their distances on passing and failing tests. The example program
of Figure 1 has two exit points: the return statement at Line 9 and
the one at Line 10.

Considering the return statement at Line 9 and the passing test
case T-2, the system state at the exit point of the original, faulty
version, is:

{str=“aba?gc”, c=‘?’, k=5, j=3} (S1)

The same test case for Patch 1 (the correct fix) results in:

{str=“aba?gc”, c=‘?’, k=5, j=3} (S2)

For Patch 2 (the incorrect fix), T-2 results in:

{str=“aba?gc”, c=‘?’, k=5, j=0} (S3)
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1 class Finder {

2 private final String str;

3 private int j;

4
5 public Finder(String s) {str = s;}

6
7 public boolean find(char c, int k) {

8 for (j = 0; j < k; j++) // bug: j <= k

9 if (str.charAt(j) == c) return true;

10 return false;

11 }

12 }

Figure 1: A Java program with a fault at Line 8

The system state for the correct patch (S2) is identical to that of
the original program (S1), with a different j value for the incorrect
patch (S3). Specifically, it is easy to verify 𝑑𝑖𝑠𝑡ObjSim computes 0
for (S1) and (S2), while it returns 1 for (S1) and (S3). We can do
similar calculations for the other exit point, as well as the failing
test T-1, and verify that neither of the patches result in different
𝑑𝑖𝑠𝑡ObjSim values. Therefore, ObjSim prioritizes Patch 1 over Patch
2 and since there are no ties in this case, the correct patch appears
in top-1 position.

CIP does similar instrumentation, but it collects not only system
state snapshots at the exit points of the patched methods, but also
records a snapshot of the system state upon entry of the methods.
In this way, it accelerates the patch assessment process by not re-
executing test cases for each patch. Instead, it directly invokes the
methods. Furthermore, unlike ObjSim, CIP only focuses on passing
tests, thus it only runs test T-2.

On the faulty version of the program, upon entry to the patched
method find, CIP records the system state snapshot

{str=“aba?gc”, c=‘?’, k=5, j=0} (S4)

Before exiting at the return statement at Line 9, the tool records
the system state snapshot

{str=“aba?gc”, c=‘?’, k=5, j=3} (S5)

After applying either Patch 1 and Patch 2, CIP invokes find
on a Finder object whose str field is initialized with “aba?gc”
and whose j field is initialized with 0, according to the recorded
snapshot upon the entry to the method in the original program,
i.e., (S4). The tool also records the system state snapshots at the exit
points of the method. For Patch 1 it will record

{str=“aba?gc”, c=‘?’, k=5, j=3} (S6)

while for Patch 2 it will record

{str=“aba?gc”, c=‘?’, k=5, j=0} (S7)

Since the system state snapshot for Patch 1, i.e., (S6), is identical
to that of the original program, i.e., (S5), CIP classifies Patch 1 (with
𝑑𝑖𝑠𝑡CIP value of 0) as likely correct and since there is only one likely
incorrect patch (with 𝑑𝑖𝑠𝑡CIP value of 3), no ranking takes place. In
this case also, the correct patch appears in top-1 position.

Table 1: Test cases for the program of Figure 1

Input Output
Id str c k Expected Actual Test Result
T-1 “ab?” ‘?’ 2 true false Failing
T-2 “aba?gc” ‘?’ 5 true true Passing

Patch 1 (correct patch):
8 for (j = 0; j < k; j++) // bug: j <= k

8 ++ for (j = 0; j <= k; j++)

Patch 2 (incorrect patch):
9 if (str.charAt(j) == c) return true;
9 ++ if ('?' == c) return true;

Figure 2: Two plausible patches for the program of Figure 1

3 EMPIRICAL STUDY
We conduct an empirical study with a two-fold goal of: (1) compar-
ing ranking performance of two object similarity-based approaches,
namely ObjSim and CIP, in terms of the number of patches that
are ranked in top-1 and top-2 positions; (2) comparing the two
techniques with a random ranking baseline based on hypergeomet-
ric probability [2], simulating a situation wherein no automated
patch correctness assessment is present. Therefore, we define two
research questions, corresponding to the study goals.
● RQ1: How do ObjSim and CIP compare to each other?
● RQ2: How do the champion object similarity-based technique
compare to a random baseline ranking?

In the rest of this section, we describe the process through which
we obtained our data set of patches. We describe the details about
our measurements before we present the results and answer our
research questions.

3.1 Dataset of Patches
For RQ2, we constructed a dataset of patches by combining the
set of Defects4J bug database [10], mentioned above, the curated
patch datasets, used in recent studies [34, 38, 41, 44], generated by
29 APR systems. After combining the datasets, we obtained 3,072
patches consisting of 1,684 patches labelled as correct, 1,374 patches
labelled as incorrect, and 14 patches labelled as unknown.

Since these data sets are curated by different research groups at
different times, they overlap, so we identified and excluded dupli-
cate patches. In order to reduce manual work needed for duplicate
elimination, we used a script to automatically remove patches that
were identical to one another up to white-spaces. Two patches
deemed to be identical if they amount to the same SHA-1 hash. We
were able to remove 487 patches with the help of this hash-based
script. It stands to reason that this method of duplicate elimination
cannot detect semantically equivalent patches, e.g., the expressions
a+b and (a)+b are semantically equivalent while they have different
hashcodes. Thus, a manual inspection is necessary. We manually
examined the remaining patches and removed obvious duplicates
that our script was unable to detect due to the unpatched code sur-
rounding the patched lines, extra parentheses around expressions,
etc. We further excluded 14 patches labelled as unknown. We also
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StopWatch.java:
118 stopTime = System.currentTimeMillis();

119 this.runningState = STATE_STOPPED;

118 ++ this.splitState=STATE_SPLIT;

Figure 3: Incorrect patch generated by ARJA for Lang-55

excluded all the patches patches that involved creating or removal
of files, classes, methods, and fields. Finally, we excluded the correct
patches that were not paired with any incorrect patch, the patches
that resulted in compilation errors, those that did not pass all the
test cases, and those that had compatibility issues with the current
implementations of ObjSim or CIP. After this pre-processing, we
ended up with 1,290 patches, 197 of which are labelled as correct
while 1,093 are labelled as incorrect. All these patched are generated
for Defects4J bugs, and each bug have one correct patch and one or
more incorrect patch(es) generated for it.

3.2 Objects and Measures
We used ObjSim and CIP to rank 1,290 patches generated for 197
Defects4J bugs. As a baseline, we used a random ranking scheme
obtained by hypergeometric probability [2] of a correct patch ap-
pearing in top-1 or top-2.

As for ranking, we consider the worst case ranking for correct
patches, meaning that upon ties, we pick the worst-case ranking
rather than averaging or picking best rank.

We emphasize that while CIP does classification at some stage,
the technique still is a ranking technique and our comparison is
meaningful. We calculate the CIP rank of correct patches as follows.
Given 𝑛 patches, among which 𝑚 < 𝑛 are correct, assume CIP
classifies 𝑘 ≤𝑚 of the patches as likely correct and the rest 𝑛 −𝑘 as
likely incorrect. We consider the batch of 𝑘 likely correct patches
(all of which have object distance of 0) as a tie of size 𝑘 and the
rest of patches are sorted as prescribed by the heuristic ranking
algorithm of CIP (all of which have positive object distances). If all 𝑘
likely correct patches are in fact correct, we give a worst-case rank
of 1 to the correct patch. If at least one correct patch is classified as
likely correct and one or more incorrect patches are also classified
as likely correct, we give a worst-case rank of 𝑘 to the correct patch.
Otherwise, we add 𝑘 to the rank of correct patch returned by the
ranking algorithm of CIP.

3.3 Results and Discussion
We present and analyze the results we obtained for answering RQ1
and RQ2. Table 2 contains detailed measurements for all the bugs
in our dataset.

3.3.1 RQ1: ObjSim vs. CIP. Table 3 summarizes the results. The
last three columns of the table report the worst-case ranking (see
§3.2) for the top ranked correct patch. The results reveal that in
19.8% (47.7%) of the cases, ObjSim ranks the correct patch in top-1
(top-2) position, meanwhile CIP ranks 9.6% (42.1%) of the correct
patches in top-1 (top-2) position.

In Table 2, we have highlighted the cases where ObjSim per-
formed worse than CIP. Here, we analyze the Lang-55 in more detail;
other cases are similar. All 10 patches generated for this bug, target

lines 118 and 119 of StopWatch.java which lie inside the method
stop. Since these two lines are covered by the same set of failing and
passing tests, both receive same Ochai suspiciousness values, so Ob-
jSim cannot tell the difference between the patches. This is because
ObjSim, as the first step, essentially groups and sorts the patches
into equivalence classes with respect to their Ochiai suspiciousness
values. However, in CIP, an incorrect patch (presented in Figure 3)
get classified as correct while the rest as incorrect. The reason is
that the patch deletes assignments to two fields, leaving their value
unchanged, and since the third field is not touched by the enclosing
method in the original program, CIP does not count the change
in its value. Among the remaining 9 patches that are classified as
incorrect (all of which have equal Ochiai suspiciousness values),
the correct patches result in least system state change and no tie
with any incorrect patch remains, thus the correct patch receives a
rank of 2.

We performed Mann-Whitney 𝑈 Test for comparing the rank-
ings pair-wise, between approaches. ObjSim ranks are generally
lower than CIP ranks (𝑝=1e-5≪ 0.05), which indicates that ObjSim
outperforms CIP. Since these observations are of statistical signifi-
cance, we conclude that ObjSim outperforms CIP in terms of the
number of patches ranked in top-1 (top-2) position.

Answer to RQ1: ObjSim outperforms CIP by ranking
more correct patches in top-1 and top-2 positions. ObjSim
ranks 19.8% (47.7%) of patches in top-1(top-2) position,
while CIP ranks 9.6% (42.1%) of the correct patches in top-1
(top-2) position.

3.3.2 RQ2: Random Baseline Comparison. Based on the discussion
of §3.3.1, we learn that ObjSim is the champion technique. At this
point, we want to know how do ObjSim compare to a random
baseline ranking. Random baseline ranking represents a setting
wherein we do not get any machine help in ranking the patches.
To simulate this effect, we use hypergeometric probability [2] of a
correct patch appearing in top-1 or top-2. Specifically, we use the
following formula to calculate the probability of a correct patch
appearing in top-𝑁 position.

ℎ(𝑐, 𝑠, 𝑃, 𝑁 ) =
( 𝑐
𝑠
) ( 𝑃 − 𝑐

𝑃 − 𝑠 )

( 𝑃

𝑁
)

where ( 𝑘
𝑥
) is the number of combinations of 𝑘 things, taken 𝑥

at a time. 𝑐 is the total number of correct patches generated for
each bug, 𝑠 is the number of correct patches we expect to appear in
top-𝑁 position, 𝑃 is the total number of plausible (including correct
and incorrect) patches for each bug, and N is either 1 (for top-1) or
2 (for top-2). Since in our data set, each bug has exactly one correct
patch generated for it, we have 𝑐 = 𝑠 = 1.

Table 2 reports the probability values for each bugs and for top-1
and top-2. Table 3 summarizes this information by taking the av-
erage of probability values for each Defects4J projects. According
to our analysis, random ranking, on average, ranks 43 (85.9) of the
correct patches in top-1 (top-2) position, while ObjSim ranks 39
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Table 2: Worst-case ranking by ObjSim, CIP, and random baseline ranking for the correct patch
Bug Id #Pl. #C #I ObjSim CIP Rand [Top-1] Rand [Top-2] Bug Id #Pl. #C #I ObjSim CIP Rand [Top-1] Rand [Top-2]
Chart-1 24 1 23 23 24 0.04 0.08 Lang-39 11 1 10 11 11 0.09 0.18
Chart-10 2 1 1 2 2 0.50 1.00 Lang-40 2 1 1 2 1 0.50 1.00
Chart-12 13 1 12 12 9 0.08 0.15 Lang-41 5 1 4 3 5 0.20 0.40
Chart-13 36 1 35 31 36 0.03 0.06 Lang-43 8 1 7 7 7 0.13 0.25
Chart-14 5 1 4 5 5 0.20 0.40 Lang-44 9 1 8 9 8 0.11 0.22
Chart-15 15 1 14 1 10 0.07 0.13 Lang-45 7 1 6 7 7 0.14 0.29
Chart-17 3 1 2 1 3 0.33 0.67 Lang-46 3 1 2 2 2 0.33 0.67
Chart-18 4 1 3 2 4 0.25 0.50 Lang-50 9 1 8 5 9 0.11 0.22
Chart-19 3 1 2 1 2 0.33 0.67 Lang-51 13 1 12 13 13 0.08 0.15
Chart-21 4 1 3 1 4 0.25 0.50 Lang-53 5 1 4 5 5 0.20 0.40
Chart-22 2 1 1 2 2 0.50 1.00 Lang-55 10 1 9 10 2 0.10 0.20
Chart-24 2 1 1 2 2 0.50 1.00 Lang-57 2 1 1 2 2 0.50 1.00
Chart-25 27 1 26 10 11 0.04 0.07 Lang-58 9 1 8 9 5 0.11 0.22
Chart-26 13 1 12 12 12 0.08 0.15 Lang-59 28 1 27 28 21 0.04 0.07
Chart-3 9 1 8 3 1 0.11 0.22 Lang-6 3 1 2 3 2 0.33 0.67
Chart-5 16 1 15 16 13 0.06 0.13 Lang-60 5 1 4 2 1 0.20 0.40
Chart-6 5 1 4 3 1 0.20 0.40 Lang-61 8 1 7 7 4 0.13 0.25
Chart-7 10 1 9 10 7 0.10 0.20 Lang-63 13 1 12 12 13 0.08 0.15
Chart-9 8 1 7 6 8 0.13 0.25 Lang-7 12 1 11 11 12 0.08 0.17
Closure-1 4 1 3 1 4 0.25 0.50 Math-1 2 1 1 2 1 0.50 1.00
Closure-10 6 1 5 4 6 0.17 0.33 Math-101 3 1 2 3 2 0.33 0.67
Closure-101 4 1 3 4 4 0.25 0.50 Math-103 2 1 1 1 2 0.50 1.00
Closure-106 2 1 1 1 2 0.50 1.00 Math-104 5 1 4 5 2 0.20 0.40
Closure-107 4 1 3 3 4 0.25 0.50 Math-105 5 1 4 5 3 0.20 0.40
Closure-108 4 1 3 4 3 0.25 0.50 Math-11 2 1 1 2 2 0.50 1.00
Closure-109 3 1 2 3 3 0.33 0.67 Math-15 5 1 4 5 5 0.20 0.40
Closure-112 5 1 4 5 5 0.20 0.40 Math-16 2 1 1 2 1 0.50 1.00
Closure-113 2 1 1 2 2 0.50 1.00 Math-18 3 1 2 1 3 0.33 0.67
Closure-114 6 1 5 2 5 0.17 0.33 Math-2 35 1 34 35 35 0.03 0.06
Closure-115 4 1 3 4 4 0.25 0.50 Math-20 19 1 18 3 11 0.05 0.11
Closure-116 2 1 1 1 2 0.50 1.00 Math-22 2 1 1 2 2 0.50 1.00
Closure-117 3 1 2 3 3 0.33 0.67 Math-24 3 1 2 3 2 0.33 0.67
Closure-119 5 1 4 4 5 0.20 0.40 Math-28 34 1 33 34 1 0.03 0.06
Closure-12 5 1 4 2 5 0.20 0.40 Math-29 4 1 3 1 1 0.25 0.50
Closure-120 3 1 2 2 2 0.33 0.67 Math-3 3 1 2 3 3 0.33 0.67
Closure-121 3 1 2 2 2 0.33 0.67 Math-30 2 1 1 2 2 0.50 1.00
Closure-122 3 1 2 3 1 0.33 0.67 Math-31 9 1 8 7 9 0.11 0.22
Closure-123 2 1 1 2 2 0.50 1.00 Math-32 7 1 6 6 7 0.14 0.29
Closure-124 6 1 5 1 6 0.17 0.33 Math-33 6 1 5 6 5 0.17 0.33
Closure-125 4 1 3 2 4 0.25 0.50 Math-39 2 1 1 1 2 0.50 1.00
Closure-126 9 1 8 9 9 0.11 0.22 Math-4 4 1 3 2 4 0.25 0.50
Closure-127 4 1 3 2 4 0.25 0.50 Math-40 10 1 9 10 8 0.10 0.20
Closure-129 5 1 4 1 5 0.20 0.40 Math-41 4 1 3 2 2 0.25 0.50
Closure-130 4 1 3 3 4 0.25 0.50 Math-42 6 1 5 1 2 0.17 0.33
Closure-133 6 1 5 2 4 0.17 0.33 Math-43 3 1 2 1 3 0.33 0.67
Closure-14 2 1 1 2 2 0.50 1.00 Math-44 4 1 3 3 2 0.25 0.50
Closure-15 3 1 2 1 2 0.33 0.67 Math-49 19 1 18 9 7 0.05 0.11
Closure-16 2 1 1 1 2 0.50 1.00 Math-5 8 1 7 1 8 0.13 0.25
Closure-17 4 1 3 1 4 0.25 0.50 Math-50 14 1 13 14 13 0.07 0.14
Closure-18 6 1 5 5 6 0.17 0.33 Math-52 2 1 1 2 2 0.50 1.00
Closure-19 2 1 1 2 2 0.50 1.00 Math-53 6 1 5 6 3 0.17 0.33
Closure-2 4 1 3 3 4 0.25 0.50 Math-56 5 1 4 5 5 0.20 0.40
Closure-21 15 1 14 15 15 0.07 0.13 Math-57 8 1 7 5 8 0.13 0.25
Closure-22 13 1 12 13 13 0.08 0.15 Math-58 7 1 6 2 7 0.14 0.29
Closure-26 3 1 2 1 3 0.33 0.67 Math-59 2 1 1 2 2 0.50 1.00
Closure-31 2 1 1 2 2 0.50 1.00 Math-6 5 1 4 5 5 0.20 0.40
Closure-33 7 1 6 6 7 0.14 0.29 Math-60 3 1 2 1 3 0.33 0.67
Closure-35 3 1 2 3 3 0.33 0.67 Math-61 2 1 1 2 2 0.50 1.00
Closure-38 5 1 4 5 5 0.20 0.40 Math-62 5 1 4 4 4 0.20 0.40
Closure-45 3 1 2 3 2 0.33 0.67 Math-63 17 1 16 16 16 0.06 0.12
Closure-48 4 1 3 4 4 0.25 0.50 Math-64 2 1 1 1 2 0.50 1.00
Closure-49 2 1 1 1 2 0.50 1.00 Math-68 2 1 1 2 1 0.50 1.00
Closure-50 2 1 1 1 2 0.50 1.00 Math-69 4 1 3 1 4 0.25 0.50
Closure-55 7 1 6 5 7 0.14 0.29 Math-7 6 1 5 4 4 0.17 0.33
Closure-57 2 1 1 2 2 0.50 1.00 Math-70 5 1 4 2 5 0.20 0.40
Closure-59 6 1 5 4 6 0.17 0.33 Math-71 7 1 6 4 5 0.14 0.29
Closure-60 2 1 1 2 2 0.50 1.00 Math-72 2 1 1 1 2 0.50 1.00
Closure-62 6 1 5 6 6 0.17 0.33 Math-73 12 1 11 10 12 0.08 0.17
Closure-64 3 1 2 2 2 0.33 0.67 Math-74 4 1 3 4 4 0.25 0.50
Closure-66 3 1 2 2 3 0.33 0.67 Math-77 2 1 1 2 2 0.50 1.00
Closure-67 5 1 4 5 5 0.20 0.40 Math-78 8 1 7 3 6 0.13 0.25
Closure-68 3 1 2 1 3 0.33 0.67 Math-79 3 1 2 3 3 0.33 0.67
Closure-7 3 1 2 1 3 0.33 0.67 Math-8 13 1 12 13 13 0.08 0.15
Closure-73 2 1 1 2 2 0.50 1.00 Math-80 49 1 48 47 47 0.02 0.04
Closure-75 6 1 5 2 3 0.17 0.33 Math-81 24 1 23 24 22 0.04 0.08
Closure-76 2 1 1 1 2 0.50 1.00 Math-82 22 1 21 10 4 0.05 0.09
Closure-78 5 1 4 5 4 0.20 0.40 Math-84 10 1 9 10 1 0.10 0.20
Closure-79 2 1 1 1 2 0.50 1.00 Math-85 35 1 34 35 35 0.03 0.06
Closure-8 2 1 1 2 2 0.50 1.00 Math-87 4 1 3 4 2 0.25 0.50
Closure-86 5 1 4 5 5 0.20 0.40 Math-88 8 1 7 7 6 0.13 0.25
Closure-89 2 1 1 1 2 0.50 1.00 Math-93 3 1 2 2 3 0.33 0.67
Closure-90 2 1 1 1 2 0.50 1.00 Math-94 3 1 2 3 3 0.33 0.67
Closure-92 11 1 10 11 11 0.09 0.18 Math-95 16 1 15 14 2 0.06 0.13
Lang-1 3 1 2 2 3 0.33 0.67 Math-96 2 1 1 2 1 0.50 1.00
Lang-10 4 1 3 4 3 0.25 0.50 Math-97 4 1 3 3 4 0.25 0.50
Lang-12 2 1 1 2 2 0.50 1.00 Math-99 2 1 1 1 1 0.50 1.00
Lang-13 2 1 1 1 2 0.50 1.00 Mockito-38 2 1 1 1 1 0.50 1.00
Lang-14 2 1 1 2 2 0.50 1.00 Time-11 18 1 17 18 12 0.06 0.11
Lang-15 2 1 1 2 2 0.50 1.00 Time-12 2 1 1 1 1 0.50 1.00
Lang-16 6 1 5 6 2 0.17 0.33 Time-14 5 1 4 3 2 0.20 0.40
Lang-18 2 1 1 2 2 0.50 1.00 Time-17 4 1 3 4 1 0.25 0.50
Lang-20 4 1 3 3 4 0.25 0.50 Time-18 2 1 1 1 2 0.50 1.00
Lang-21 2 1 1 2 2 0.50 1.00 Time-19 2 1 1 2 1 0.50 1.00
Lang-22 10 1 9 10 10 0.10 0.20 Time-20 2 1 1 2 2 0.50 1.00
Lang-24 2 1 1 2 2 0.50 1.00 Time-24 3 1 2 2 1 0.33 0.67
Lang-27 11 1 10 11 9 0.09 0.18 Time-4 12 1 11 12 12 0.08 0.17
Lang-29 2 1 1 1 2 0.50 1.00 Time-7 4 1 3 3 3 0.25 0.50
Lang-31 2 1 1 2 2 0.50 1.00 Time-9 3 1 2 1 1 0.33 0.67
Lang-35 2 1 1 2 2 0.50 1.00 Total 1,093 197 1,290

* #Pl., #C, and #I denote number of plausible, correct, and incorrect patches, resp. Rand [Top-1] and Rand [Top-2] represent probability of a correct patch appearing in top-1 and top-2 position, resp.
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Table 3: Top-1 and Top-2 ranking performance of the three
techniques, summarizing Table 2

Project #Pl #C #I ObjSim CIP Rand [Avg]

Chart 201 19 182 Top-1 4 2 2.4
Top-2 8 6 4.8

Closure 269 64 205 Top-1 17 1 16
Top-2 36 24 32

Lang 220 35 185 Top-1 2 2 7
Top-2 15 17 14

Math 541 67 474 Top-1 12 8 13.4
Top-2 28 27 26.8

Mockito 2 1 1 Top-1 1 1 0.5
Top-2 1 1 1

Time 57 11 46 Top-1 3 5 3.7
Top-2 6 8 7.3

Total 1290 197 1093 Top-1 39 19 43
Top-2 94 83 85.9

(94) of the correct patches in top-1 (top-2) positions. Therefore,
we conclude that ObjSim (and hence CIP) does not offer any im-
provement over random ranking in terms of the number of correct
patches ranked in top-1 position. This is while ObjSim still ranks
more correct patches in top-2 position.

Answer to RQ2: ObjSim ranks more correct patches in
top-2 position than random baseline, but in terms of the
number of correct patches ranked in top-1 position, ObjSim
does not offer any improvement over the random ranking
scheme.

3.4 Threats to Validity
Threats to Internal Validity. There is an accuracy issue that plagues

both CIP and ObjSim but other dynamic techniques (most notably
PATCH-SIM [38]) are likely immune to. Note that there is an im-
plicit assumption behind ObjSim and CIP that the computation
is deterministic. As a simple example that violates this assump-
tion, consider two (identical) copies of a program that stores the
value of a call to System.currentTimeMillis() in a field of an object.
PATCH-SIM can determine that the two copies are identical, as
the sequence of instructions executed by the two copies are equal.
However, ObjSim and CIP depend on the value of the field in which
the returned value of System.currentTimeMillis() is stored, and in
two different executions they will observe different values for the
field. In other words, given a set of plausible patches for a nonde-
terministic program, ObjSim and CIP are likely to rank the patches
differently for different executions. This fact might pose some threat
to the validity of our conclusions. To reduce this threat, we ran our
experiments two times ensuring that the computed distance values
do not fluctuate.

Threats to External Validity. We have drawn our conclusions
based on a set of bugs from a specific data set (namely Defects4J),
and CIP and ObjSim might perform differently on different set
of bugs. The tools are publicly available [13, 44], so the research
community can repeat these experiments on larger scale.

Threats to Construct Validity. In our study we focus only on
existing object similarity-based approaches, which interpret pro-
gram behavior changes differently from other dynamic approaches.
Different abstractions of the program behavior may lead to other
conclusions.

4 RELATEDWORK
Patch prioritization based on static code features and/or fault local-
ization information had been an integral part of a number of APR
systems [7, 8, 15, 30, 35]. The research community also focused on
patch correctness assessment as an standalone research [5, 6, 12, 14,
32, 34, 37, 38, 40–44]. Here we briefly discuss the empirical studies
on patch assessment, which are most related to our work.

Ye et al. [42] present an empirical study on the correctness of
APR-generated patches assessed via DiffTGen tool [37]. A recent
study by Wang et al. [34] reveals that static and dynamic automatic
patch correctness assessment techniques are complementary in
that the former achieve high recall while the latter tend to achieve
higher precision. None of these studies concern the techniques
based on object similarity.

5 CONCLUSIONS
We studied a family of dynamic patch ranking techniques that we
call object similarity-based patch ranking techniques. Specifically,
we ran ObjSim [14] and CIP [44] on 1,290 APR-generated patches.
Our results provide empirical evidence that ObjSim outperforms
CIP in terms of the number of correct patches ranked in top-1 (top-
2) position, yet it does not offer any improvement over a random
baseline ranking. These results warrant further research on the
assumptions underlying these two techniques and techniques based
on similar assumptions.
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